Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy

    • Zaloguj
    Zobacz pozycję 
    •   Strona główna Repozytorium
    • PIWet - PIB
    • Publikacje
    • Zobacz pozycję
    •   Strona główna Repozytorium
    • PIWet - PIB
    • Publikacje
    • Zobacz pozycję
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Source attribution of human Campylobacter infection: a multi-country model in the European Union.

    Frontiers in Microbiology

    Thumbnail
    Oglądaj/Open
    fmicb-1-1519189.pdf (1.513MB)
    Data
    2025
    Autor
    Thystrup, Cecilie
    Brinch, Maja Lykke
    Henri, Clementine
    Mughini-Gras, Lapo
    Franz, Eelco
    Wieczorek, Kinga
    Gutierrez, Montserrat
    Prendergast, Deirdre M.
    Duffy, Geraldine
    Burgess, Catherine M.
    Bolton, Declan
    Alvarez, Julio
    Lopez-Chavarrias, Vicente
    Rosendal, Thomas
    Clemente, Lurdes
    Amaro, Ana
    Zomer, Aldert L.
    Grimstrup, Joensen Katrine
    Møller, Nielsen Eva
    Scavia, Gaia
    Skarżyńska, Magdalena
    Pinto, Miguel
    Oleastro, Mónica
    Cha, Wonhee
    Thépault, Amandine
    Rivoal, Katell
    Denis, Martine
    Chemaly, Marianne
    Hald, Tine
    Metadane
    Pokaż pełny rekord
    Streszczenie
    Introduction: Infections caused by Campylobacter spp. represent a severe threat to public health worldwide. National action plans have included source attribution studies as a way to quantify the contribution of specific sources and understand the dynamic of transmission of foodborne pathogens like Salmonella and Campylobacter. Such information is crucial for implementing targeted intervention. The aim of this study was to predict the sources of humancampylobacteriosis cases across multiple countries using available whole-genome sequencing (WGS) data and explore the impact of data availability andsample size distribution in a multi-country source attribution model.Methods: We constructed a machine-learning model using k-mer frequency patterns as input data to predict human campylobacteriosis cases per source.We then constructed a multi-country model based on data from all countries.Results using different sampling strategies were compared to assess the impact of unbalanced datasets on the prediction of the cases.Results: The results showed that the variety of sources sampled and the quantity of samples from each source impacted the performance of the model. Most cases were attributed to broilers or cattle for the individual and multi-country models. The proportion of cases that could be attributed with 70% probability to a source decreased when using the down-sampled data set (535 vs. 273 of 2627 cases). The baseline model showed a higher sensitivity compared to the down-sampled model, where samples per source were more evenly distributed. The proportion of cases attributed to non-domestic source was higher but varied depending on the sampling strategy. Both models showed that most cases could be attributed to domestic sources in each country (baseline: 248/273 cases, 91%; down-sampled: 361/535 cases, 67%;).Discussion: The sample sizes per source and the variety of sources included in the model influence the accuracy of the model and consequently theuncertainty of the predicted estimates. The attribution estimates for sources with a high number of samples available tend to be overestimated, whereasthe estimates for source with only a few samples tend to be underestimated.Reccomendations for future sampling strategies include to aim for a more balanced sample distribution to improve the overall accuracy and utility of source attribution efforts.
    URI
    https://www.frontiersin.org/articles/10.3389/fmicb.2025.1519189
    Zbiory
    • Publikacje [640]

    DSpace software copyright © 2002-2016  DuraSpace
    Kontakt z nami | Wyślij uwagi
    Theme by 
    Atmire NV
     

     

    Przeglądaj

    Całe RepozytoriumZbiory i kolekcjeDaty wydaniaAutorzyTytułyTematyTa kolekcjaDaty wydaniaAutorzyTytułyTematy

    Moje konto

    Zaloguj

    Statystyki

    Przejrzyj statystyki użycia

    DSpace software copyright © 2002-2016  DuraSpace
    Kontakt z nami | Wyślij uwagi
    Theme by 
    Atmire NV