Pokaż uproszczony rekord

Journal of Infection

dc.contributor.authorTeunis, Gijs
dc.contributor.authorDallman, Timothy J.
dc.contributor.authorZając, Magdalena
dc.contributor.authorSkarżyńska, Magdalena
dc.contributor.authorPetrovska, Liljana
dc.contributor.authorPista, Angela
dc.contributor.authorSilveira, Lenor
dc.contributor.authorClemente, Lurdes
dc.contributor.authorThépault, Amandine
dc.contributor.authorBonifait, Laetitia
dc.contributor.authorKerouanton, Annaëlle
dc.contributor.authorChemaly, Marianne
dc.contributor.authorAlvarez, Julio
dc.contributor.authorSöderlund, Robert
dc.contributor.authorMøller Nielsen, Eva
dc.contributor.authorChattaway, Marie
dc.contributor.authorBurgess, Kaye
dc.contributor.authorByrne, William
dc.contributor.authorvan den Beld, Maaike
dc.contributor.authorHendrickx, Antoni P.A.
dc.contributor.authorFranz, Eelco
dc.contributor.authorPires, Sara
dc.contributor.authorHald, Tine
dc.contributor.authorMughini-Gras, Lapo
dc.date.accessioned2025-10-15T11:24:21Z
dc.date.available2025-10-15T11:24:21Z
dc.date.issued2025
dc.identifierhttps://dspace.piwet.pulawy.pl/xmlui/handle/123456789/856
dc.identifier.issn1532-2742
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0163445325002324?via%3Dihub
dc.description.abstractNon-typhoidal Salmonella is the second most frequently reported zoonotic pathogen in the European Union and European Economic Area. Most human infections are caused by serovars Enteritidis and Typhimurium. Genomic characterisation of Salmonella isolates from humans and animals has become a routine public health surveillance tool in many countries. In this study, the relative contributions of several potential sources of human infection of the five frequently reported Salmonella serovars was estimated using machine-learning methods based on a large, cross-sectional collection of genomes from human cases, and animal and environmental sources, across ten European countries. To define the population structure, core-genome Multilocus Sequence Typing was performed. A supervised machine-learning approach was applied for source attribution in the form of a Random Forest classifier. The source and country attribution models achieved moderate accuracy (F1= 0.6-0.9), which is lower than in previous studies using machine-learning on Whole Genome Sequencing data. However, attributions of human clinical isolates to different sources were generally in line with previous findings for these five serovars. While the lack of clonality in some sources hindered their prediction, it is also likely that certain sources (e.g., pets) do not serve as major contributors to human infection. Therefore, in most cases attributing these sources to the livestock species they are typically associated with is likely appropriate. Country attributions showed that substantial human cases are attributable to countries other than their own, indicating geographical interrelatedness of sources. This highlights the value of internationally harmonized Salmonella-control policies in the food production chain.en_US
dc.language.isoenen_US
dc.publisherELSEVIERen_US
dc.subjectsource attributionen_US
dc.subjectSalmonellosisen_US
dc.subjectmodellingen_US
dc.subjectwhole-genome sequencingen_US
dc.titleAttributable sources of the five most prevalent non-typhoidal Salmonella serovars across ten European countriesen_US
dc.typeArticleen_US
dcterms.bibliographicCitation2025, 106632
dcterms.titleJournal of Infection
dc.identifier.doihttps://doi.org/10.1016/j.jinf.2025.106632


Pliki tej pozycji

PlikRozmiarFormatPrzeglądanie

Nie ma plików powiązanych z tą pozycją.

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord