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ABSTRACT Phylogenetic evidence from the recent resurgence of high-pathogenic-
ity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European
wild birds and poultry since October 2021, suggests at least two different and dis-
tinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident
viruses have been maintained, presumably in wild birds, in northern Europe
throughout the summer of 2021 to cause some of the outbreaks that are part of
the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were
reintroduced by migratory birds, and these two sources of reintroduction have

driven the HPAI resurgence. Viruses from these two principal sources can be distin- Editor J. S. Malik Peiris, University of Hong
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RECENT EPIZOOTIC EVENTS REGARDING HIGHLY PATHOGENIC AVIAN INFLUENZA
IN EUROPE

etween October 2020 and the summer of 2021, Europe experienced the largest and

most severe avian influenza virus (AlV) epizootic ever in wild birds, poultry, and captive
birds, caused by the emergence of clade 2.3.4.4b highly pathogenic AIV (HPAIV) of the
H5Nx subtype. These heavy outbreaks resurged in October 2021 and continued in 2022.
H5N8 HPAIVs initially dominated the epizootic until the spring of 2021. However, these
viruses also reassorted with low-pathogenicity AlV (LPAIV), generating a wide range of ge-
notypes in which internal genetic segments were swapped. In addition, reassortants fea-
turing different neuraminidase (NA) subtypes (N1, N3, N4, and N5) were sporadically
detected, mainly in wild birds in northwestern European regions, with some (e.g., H5N3)
being detected in only a few wild-bird species or regions (1). Historically, severe epizootics
of highly pathogenic avian influenza (HPAI) across Europe during winter seasons have
been followed by a period of a sharp decline in HPAIV detections during the summer
months to an average of 7 (range, 0 to 16) wild-bird cases (data according to the EMPRES-i
database [https://empres-i.apps.fao.org/]) (see Table S1 in the supplemental material),
presumably through the presence of immunity to the circulating hemagglutinin (HA)
following high viral prevalences during the previous epizootic (2-4). In addition, the wide
dispersal of birds during the breeding period provides unfavorable conditions for virus
transmission during summer. However, since February 2021, the frequency of detection of
the HPAIV H5N1 subtype has increased in late spring, and despite a decrease in cases
throughout the summer, the virus did not completely disappear but was observed in 39
wild birds across Europe, challenging the restricted seasonal occurrence of HPAIV in
Europe so far (1). While most poultry outbreaks detected until the summer of 2021 were
caused by the H5N8 subtype, the H5N1 virus started to dominate in wild birds in the late
spring of 2021, reversing the autumn/winter 2020-2021 scenario, during which H5N8 was
the most widespread genotype in almost all of the affected species. The HPAIV H5N1 infec-
tions, sporadically detected throughout the summer of 2021 and in early autumn in wild
birds, were all reported in northern Europe, in an area between the British Outer Hebrides
and the Gulf of Finland (1, 5). In addition, cases also occurred along the Russia-Kazakhstan
border. Coinciding with the onset of the autumn migration of aquatic wild birds, a
renewed spike of HPAIV H5N1 detections in wild birds was observed, initially affecting
apparently healthy Eurasian wigeon (Mareca penelope) and teal (Anas crecca) and later on
being associated with increased deaths. The first detections were observed on the
Wadden Sea coast of Germany and Denmark in October 2021. After a short delay, associ-
ated outbreaks were also detected in zoos and poultry farms in parallel with an increasing
number of wild-bird cases across Europe (1).

The sequence of events described above raises several questions. Which reservoir
species have enabled the maintenance and reemergence of HPAIV H5N1 causing the
extensive epizootic in late 2021 and early 2022? Have the outbreaks toward the end of
2021 been caused by viruses that were maintained in Europe, and/or were these
viruses reintroduced by migratory birds, and if so, did these viruses replicate/evolve in
the European Union or at breeding sites in northeast Eurasia? Finally, why has previous
exposure of wild birds during the H5N8 epizootic from 2020 to 2021 not led to a
reduced incidence in the 2021-2022 autumn/winter season?

PHYLOGENETIC ANALYSES REVEAL THE COCIRCULATION OF AT LEAST TWO
HEMAGGLUTININ LINEAGES WITHIN CLADE 2.3.4.4b IN EUROPE IN 2021

Currently available AV sequence data established here and taken from public data-
bases were compiled and analyzed phylogenetically (maximum likelihood [ML] and
maximum credibility analyses). Of these sequences, 240 originated from viruses
detected in wild birds, while 106 came from poultry (Table S2). Phylogenetic analyses
of the H5 HA gene revealed that two H5 sublineages within clade 2.3.4.4b, tentatively
termed B1 (“branch” 1) and B2, have cocirculated since the autumn of 2021 in Europe
(Fig. 1; an identical tree with full sequence names and accession numbers is provided
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FIG 1 Time-scaled maximum clade credibility (MCC) phylogeny of hemagglutinin (HA) sequences of

HPAIV collected between August 2020 and November 2021 (scale at the bottom) in wild birds
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in Fig. S1). The divergence within these sublineages amounts to 0 to 9 nucleotides (B1
lineage) compared to 2 to 18 nucleotides (B2 lineage), which result in up to 3 (B1) and
5 (B2) amino acid differences. A lineage-indicating substitution is present at HA posi-
tion 548 (HA548), coding for methionine in B1 and isoleucine in B2. The close phyloge-
netic relationship of the viruses of the B1 sublineage, which form a monophyletic
branch in the Bayesian HA phylogeny; its stepwise branching pattern throughout the
evolutionary period; and a consecutive temporal order support its continuous circula-
tion at a relatively low level in northwestern Europe and Scandinavia during the
summer of 2021. However, lineage B1 reveals a small time gap in the pectinate pattern
(Fig. 1, arrow B1). A significantly larger time gap is evident in the second monophyletic
lineage, B2, between the Nigerian poultry HPAIV sequences of March 2021 (eg.
EPI_ISL_4061491) and a virus detected in a jackdaw (EPI_ISL_7050532) in August 2021
in Sweden (Fig. 1, arrow B2). These “summer gaps,” which could not be closed by
including contemporary sequences from locations outside Europe, likely indicate miss-
ing bridging sequences as AlVs from relevant species and/or geographic regions have
been undersampled. Although the B1 and B2 branches are also supported by high
bootstrap values in the corresponding maximum likelihood tree (Fig. S2), such summer
gaps in genetic distances are not clearly visible. Thus, presumably, viruses have been
maintained at a low level of circulation during the summer months of 2021 in Europe
(B1) or other geographic areas (B2). The increasing numbers of H5N1 reassortants/ge-
notypes, from a single event since February 2021 (Fig. 2, light green) to at least 16
events until November 2021 (Fig. 2, other colors), give further evidence supporting
maintenance through sustained circulation. However, it cannot be excluded that both
defined sublineages arose from two separate precursors within the range of H5 HPAIVs
identified in Europe, Russia, and Africa since July 2020 (Fig. 1).

The B1 HPAI H5N1 viruses, first identified in wigeons in the Wadden Sea in week 41
in 2021, are highly similar to the HPAI H5N1 viruses detected for the first time in the
fourth quarter (Q4) of 2020 in, e.g., The Netherlands (for example, the genotypes NEL
2020 and GER 2020-02 showed 99.8% identity, and the identity to GER Q3Q4 is 99.6%
across the coding regions of all segments). This strain was present in Germany in Q1
and Q2 of 2021 as well as in other northern European countries in 2021. Full-genome
sequence analyses revealed that these viruses represent a single genotype continuum
(Ger-02-21-N1, Ger-10-21-1.1, and Ger-10-21-1.3) (Fig. 1 and 2).

However, after week 42, an expansion became evident in the spectrum of geno-
types of the H5N1 HPAIVs in Europe, showing reassortment of the PB2, PA, and NP seg-
ments of a currently unknown origin, i.e., in LPAIVs circulating in wild birds in Asia or
Europe (genotypes Ger-10-21-N1.4 and -1.5). These genotypes were associated with an
H5 HA of B2, which was also found in the genotype background of Ger-10-21-N1.2
(Fig. 2).

EVIDENCE FOR LOCAL CIRCULATION AND INDEPENDENT NEW INCURSIONS OF
SUBLINEAGES B1 AND B2, RESPECTIVELY

From the data available, these intricate relationships indicate that at least one fur-
ther independent incursion into northern Europe of an HPAI H5N1 virus with an HA of
sublineage B2 must have occurred in October 2021. It is important to note that H5
sequences from Senegal and Nigeria (February to March 2021) are in the younger
ancestry of this lineage, although its eldest ancestors were detected in lItaly in
November 2020. Closely related B1 viruses circulated during the winter of 2020 in
southeast Europe (as reassortants with an N5 NA partner), and viruses of this lineage
were introduced from Europe to western Africa in the winter of 2020 (6), affecting

FIG 1 Legend (Continued)

(colored round tips), poultry (black square tips), and mammals (red triangle tips) of European
countries. Country colors are ordered from northeast to southwest. Two distinct branches, B1 and B2,
as well as the times and subtypes of different sublineages are depicted. The two arrows indicate a
time gap during the summer period in branches B1 and B2.
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FIG 2 Genotype-based panoramic scope of reassortant HPAIV H5N1 detected in Europe in 2021. Maximum likelihood (ML) trees of concatenated coding
sequences of full genomes were generated with RAXML. A polar tree layout with proportional transformed branches was used for visualization. The
genome composition is sketched with appropriately colored segments for each genotype; major genotypes are also shown as schematic virions.

Nigerian poultry in March 2021 (Fig. 1). Unfortunately, no sequences are available from
these regions during the summer period, but it could be speculated that the summer
gap was associated with northeastward wild-bird spring migration, transposing the vi-
rus from Africa toward the Near East and Central Asia. Strikingly, HA sequences from
HPAI H5N1 outbreaks on poultry farms in southern Russia in the autumn of 2021 clus-
ter with B2 HA genes (Fig. 1). However, the analyses of the full genomes reveal evi-
dence for different genotypes with reassorted genetic segments that have emerged
from geographically disparate poultry farms across Russia. Likewise, other HPAI H5N1
viruses detected in poultry in central Europe during Q3 of 2021 (e.g., in the Czech
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Republic) present a different genotype with a reassorted PB2 gene segment (Czc-09-
21-N1) (Fig. 2). The emergence of multiple regionally restricted genotypes (e.g.,
Germany, ltaly, Wales, Denmark, and Russia) underlines the unprecedented genomic
variety of the circulating H5N1 viruses. The ancestral H5N1 virus in the winter of 2020
arose as a reassortant with PB2, PB1, PA, and NP segments from LPAIV collected in cen-
tral Asia and NAT and NS segments from European migratory wild-bird LPAIV. The an-
cestral strain for BT and B2 further reassorted, incorporating PA from northern Asia and
NP segments from central and northern Asia.

It likely requires additional sequences filling the indicated summer gap to clarify
whether a set of HA B2 viruses of different genotypes (Ger-10-21-N1.2, -1.4, and -1.5)
has been introduced or whether reassortment of PB2, PB1, PA, NP, and NS segments
has occurred in northern or eastern Europe and to what extent poultry holdings play a
role in the emergence of newly reassorted viruses. In addition, the lack of genomic in-
formation on LPAIV cocirculating in wild-bird populations both within Europe and
across ecologically linked populations in Eurasia severely limits the accurate source
designation of reassorted segments.

This study provides evidence for two temporally and geographically overlapping
scenarios:

1. The continuous presence and genetic drift of HPAI H5N1 viruses related to
genotype Ger-02-21-N1 and HA of the B1 type have been detected since the
autumn of 2020 in northern Europe: representatives of this genotype persisted
in wild birds in a localized discrete manner over the summer of 2021 in a wide
geographic area stretching from the Outer Hebrides to the Bay of Finland,
representing summer breeding grounds of those species, and touching the
southern coasts of the North Sea and the Baltic Sea.

2. New substantive incursions of a second sublineage of HP H5N1 viruses (B2) have
been detected since October 2021. This lineage showed an African ancestral
relationship, in their HA genes, but was also detected contemporaneously in a
wider area, including poultry outbreaks in Russia in September 2021. These viruses
were initially (week 41 of 2021) detected in apparently healthy long-distance
migratory birds (Eurasian wigeon and teal) in the Wadden Sea area.

CONSEQUENCES OF THE EXPECTED INCREASE AND EXTENT OF HPAIV INFECTION
PRESSURE ON WILD BIRDS AND POULTRY IN EUROPE

HPAIV H5N1 has emerged through uncertain pathways and drivers as the dominant
HPAIV subtype (over previous H5N8 viruses) that is causing extensive infections across
Europe since late 2021 and has even spread across the Atlantic to Newfoundland and
extended its range into the United States (7, 8). The pattern of the rapid spread of the B1
and B2 sublineages of HPAIV H5N1 in migratory wild birds despite the preceding major
epizootic affecting the same metapopulations of wild birds just half a year earlier has not
been observed in Europe previously but may be due to unknown fitness advantages of
the B1 and B2 HPAIVs (9). Although a high proportion of juvenile and highly susceptible
migratory birds is expected in the autumn migratory period, at least some of the surviving
adult wild birds should have been exposed to antigenically similar H5 molecules during
the previous season and, as such, would be predicted to have some level of preexposure
immunity (10-12). Currently, it is not clear whether juvenile wild birds are preferentially
affected by current HPAIV H5NT1 infections; likewise, there is no indication that there have
been significant die-offs in some hosts such as dabbling ducks. Clearly, highly pathogenic
H5N1 is altering both its host range and epidemiology within wild-bird hosts. Detailed
future characterization of the viruses prevalent in early and late 2021 should include anti-
genic cartography with both birds and ferret antisera to investigate whether, apart from
proven genetic drift, some antigenic drift contributed to the selection and success of these
sublineages. However, an in silico analysis of current H5N1 and previous H5N8-related HA
sequences according to Peeters et al. (13) did not suggest amino acid substitutions at sites
that are critical for antigenicity (data not shown).
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The available data suggest a fundamental shift in the observed epidemiology of
these viruses, with the potential for an enzootic status of this HPAIV in northern
Europe (“enzootic scenario”), together with repeated incursion risks via migratory birds.
This observation has highly significant implications for both prevention and control
strategies as extended (annual instead of seasonal) and increased (by numbers of
infected wild birds per month) incursion pressure ensues for European poultry hold-
ings. However, the assessment of data needs to consider that our observations are
based on no more than 12 months of evidence, with a surveillance gap being strongly
acknowledged in our assessment. Further to recurrent epizootics, the repeated detec-
tion of influenza of avian origin in wild mammals (Estonia, Finland, Germany, Sweden,
The Netherlands, and the United Kingdom [14]) emphasizes the need to characterize
the zoonotic potential of these emerging genotypes. Optimized biosecurity measures,
early detection, rapid containment, and depopulation of the affected premises remain
the backbone of defense against incursions in areas where vaccination is not practiced
(15). However, infection pressure is expected to remain high, and it is extended tempo-
rally. High vigilance and maintaining effective biosecurity measures are strenuous for
poultry holders. There are also some conflicts of goals affecting biosecurity; i.e., forced
housing of free-range poultry has to be limited for both animal welfare and economic/
marketing reasons. Certainly, even with increased vigilance, future breaches in biose-
curity defenses are likely (16).

In conclusion, we propose that further preventative tools must be considered to
protect the poultry production sector in vulnerable regions (wetland areas with dense
poultry populations) and in critical poultry sectors (turkey fattening and free-range ta-
ble egg production). Since proximity to open water bodies has been identified as a risk
factor, avoiding the placement of poultry farms close to wetland areas as well as care-
fully planned and controlled vaccinations of flocks at risk should be considered (17—
20). However, both options require a fundamental shift in the approach to preventive
measures, especially across countries that currently favor surveillance and culling over
vaccination. Further investment in next-generation vaccines that can be available at
low cost and well matched to viruses circulating contemporaneously is required while
supporting global approaches for improved control and threat mitigation.
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