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Abstract: The presented procedure combines experience from two LC-MS/MS methods previously
developed by our team for NSAIDs determination in meat and milk. The novelty was a modification
of sample preparation and combining LC-MS/MS method for milk and muscle. The clean-up
procedure was investigated, leading to a change from SPE to dSPE with C18 bulk sorbent. Unlike most
of the existing methods, chromatographic separation was achieved on a C8 chromatographic column.
This method was developed and validated under European Commission Decision 2002/657/EC.
Recovery for milk samples values between 86.3% to 108%, with the coefficient of variation, varied
from 5.51% to 16.2%. The recovery for muscle was calculated to be between 85.0% and 109%, and the
coefficient of variation was—4.73% to 16.6%. The validation results prove that the method is suitable
for confirmatory purposes in milk and muscle. Of 452 samples tested in 2019 and 2020, two have
been identified as non-compliant.

Keywords: NSAIDs; LC-MS/MS; residues

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used pharmaceuti-
cals in both human and animal medicine. They can reduce pain, inflammation, prevent
blood clots, and decrease fever. NSAIDs are a relatively safe group of drugs. However
their usage can cause side effects, including peptic ulcer disease, kidney and liver failure,
or hypersensitivity (up to 2% of adults) from which the most dangerous is anaphylactic
shock [1]. Despite the similar mechanism of action (inhibition of the enzymes responsible
for proteinoid synthesis—COX), NSAIDs are a diverse group of drugs, with different
half-lives, from 4 h for ibuprofen, diclofenac or acetaminophen, to 20–60 h for oxicams
(in human) [2]. In veterinary medicine, they became an essential class of medications for
most mammalian animals. There is still an insufficient amount of information about their
pharmacokinetics in animals; however, it has been proven that acidic drugs (pKa 4–5),
including diclofenac, ibuprofen, ketoprofen and more, seem to accumulate and persist
in inflamed tissue, such as the synovial fluid of inflamed joint [3]. Because the adminis-
tration of NSAIDs for medical and veterinary purposes is so vast, they are also regarded
as environmental contaminants [4]. Recent findings show NSAIDs residues can cause
deadly threats for many animal species, such as Indian vultures who die due to diclofenac
poisoning [5].

The monitoring of residues in food of animal origin is an important task for both
human and animal health. Although the risk associated with the intake of drugs with
food is low, it still must be assured that the levels of these substances will not exceed the
limits introduced in regulatory documents [6]. Despite some NSAIDs being registered as
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veterinary drugs, only few have defined maximum residue levels (MRL) (Table 1) and are
allowed for use in food-producing animals. According to the European Safety Food Au-
thority (EFSA), in 2019, European laboratories involved in the official food control analysed
24,387 samples (muscle, milk), of which 46 (0.19%) were reported as non-compliant [7].

Many methods for the determination of NSAIDs in animal tissue and milk have been
developed. Although some single-residue methods are based on HPLC-UV methods [8],
LC-MS/MS has become a technique of choice due to European regulations and their
constant evaluation. The development of the multi-residue method for NSAIDs is still a
challenge because of their chemical variety. Most of them have a chemical structure of weak
acids; however, there are some basic compounds (metamizole and its metabolites). That
is why previous methods for the determination of NSAIDs residues in milk were using
different sample preparation and analytical conditions for acidic and basic NSAIDs [9,10].
Moreover, analysis of muscle tissue requires sufficient clean-up, including SPE and/or
filtration, which makes sample preparation time-consuming and labour-intensive [10–14].

Moreover, some compounds such as phenylbutazone and oxyphenbutazone are highly
prone to oxidation during analysis. For this reason, some methods include using ascorbic
acid as an antioxidant [9,11,13–15]. These challenges resulted in only a few methods that
combine two or more different matrices [12,13,16].

Table 1. MRL levels established by EU in Commission Regulation No 37/2010 (DC, FIRO, FLU, 5-OH FLU, TOL, MEL,
4-MAA, CPF) [6] and levels * recommended by CRL guidance paper (PBZ, OPB, IBU, NAP, MEF) [17].

Analyte Animal Species MRL/Level * Matrix

Diclofenac (DC) Bovine
5 µg/kg Muscle

0.1 µg/kg Milk
Porcine 5 µg/kg Muscle

Firocoxib (FIRO) Equidae 10 µg/kg Muscle

Flunixin (FLU)
Bovine 20 µg/kg Muscle
Porcine 50 µg/kg Muscle
Equidae 10 µg/kg Muscle

5-Hydroxyflunixin (5-OH FLU) Bovine 40 µg/kg Milk

Tolfenamic acid (TOL)
Bovine, porcine 50 µg/kg Muscle

Bovine 50 µg/kg Milk

Meloxicam (MEL)
Bovine, caprine, porcine,

rabbit, Equidae 20 µg/kg Muscle

Bovine, caprine 15 µg/kg Milk

Metamizole (as 4-Methylaminoantipyrin)
(4-MAA)

Bovine, porcine, Equidae 100 µg/kg Muscle
Bovine 50 µg/kg Milk

Carprofen (Sum of carprofen and carprofen
glucuronide conjugate) (CPF) Bovine, Equidae 500 µg/kg Muscle

Phenylbutazone (PBZ)
Oxyphenbutazone (OPB) - 5 µg/kg * Muscle, milk

Ibuprofen (IBU)
Naproxen (NAP)

Mefenamic acid (MEF)
- 10 µg/kg * Muscle, milk

The goal of this study was to develop a method that would work for both muscle tissue
and milk, for all required compounds, sensitive enough to detect a wide concentration range
(0.1 µg/kg for diclofenac and 100 µg/kg for metamizole), with a fast and straightforward
sample preparation process.
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2. Results and Discussion
2.1. LC-MS/MS Analysis

NSAIDs are a group of polar compounds; thus, the ESI source is the most suitable
choice. It was previously established that the negative ionisation is suitable for more
acidic NSAIDs (better signal to noise ratio), and positive ionisation showed better results
for metamizole metabolites, some coxibs, and NSAIDs (e.g., diclofenac) [18]. Previous
assumptions were confirmed during instrument tuning for each compound when both
ionisation modes were tested. For diclofenac, positive ionisation was selected due to better
reproducibility results. Most of our results are in accordance with previously published
data [19,20].

As a mobile phase, a mixture of MeOH:ACN (8:2) and 0.01 M ammonium formate
(pH 5) was chosen. It has been proven that ammonium formate helps with ionisation under
ESI (-) mode by changing the pH of the mobile phase [11]. Our team’s proportion of MeOH
and ACN was previously optimised, resulting in the highest signals [21]. Although most of
the publications imply using the C18 column [9,11–13,16,19,22,23], under our mobile phase
composition, the best results of separation, better pick shape, and relatively short time of
analysis were obtained with the C8 column, which was then used for further optimisation.

2.2. Extraction and Clean-Up

Sample preparation is always the crucial point of every method. Most of the published
methods focus on one specific matrix. Three papers combine similar sample preparation for
muscle tissue and milk [12,13,16]. This is, by far, the most significant change that allowed to
speed up the analysis. The literature overview shows that the most used extraction method
is liquid–liquid extraction. Due to the different sample weights, the volume of organic
solvent was optimised for sufficient extraction yield. This step was already optimised in
the previous studies [23]. It was proven that the deconjugation step is needed for some
analytes (CPF, FLU, IBU) [21].

For analysis of milk, this approach seems unnecessary. The main route of administra-
tion for dairy cows is intramammary, and because glucuronidation occurs mainly in the
liver, drugs are less likely to create glucuronides. Although marker residue for FLU in milk
is 5-OH FLU, it was proven that administration of FLU could cause the presence of flunixin
glucuronide in milk, but the concentration of glucuronide form was not significant enough
to re-evaluate the marker residue [21]. It was shown that the extraction process performed
in acidic conditions results in conjugate being hydrolysed back to the parent substance [24].

As the previous research proves, the clean-up process is one factor that may improve
results and reduce matrix effect, although it is still insufficient to prevent some ion suppres-
sion [25]. In some methods, solid-phase extraction (SPE) or dispersive SPE is performed,
usually by using sorbents such as C18 [9], polymers [12], or QuEChERS [14,15]. There are,
however, methods in which further purification is not performed [16,19]. In the presented
method, by implementing dispersive SPE, the time of sample preparation has been reduced
by half compared to the traditional SPE [10,12]. The amount of the sorbent was optimised
by analysing fortified samples of milk and muscle. Four sorbent weightings were checked
(0.25 g, 0.50 g, 0.75 g, 1.00 g). As a result, 1.00 g of sorbent was chosen for further analyses,
giving the best compromise between recovery and clean-up efficiency. As an additional
step, centrifugation at −20 ◦C helped remove a large part of the co-extracted fatty acids
and water phase.

Finally, the solvent and solvent volume for samples reconstitution were
optimized—DMSO and the mobile phase were verified. Using DMSO slowed down
the sample evaporation, which most likely reduces the oxidation of the susceptible com-
pounds. As a result, DMSO showed the best results by improving the signal intensity and
peak shape of OPB and PBZ (Figure 1).
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Figure 1. Ion chromatograms for PBZ and OPB (transitions used for quantification) obtained from bovine milk sample
spiked at level 1.0 MRL. Sample A was reconstituted in 0.1 mL of mobile phase and sample B in 0.1 mL of DMSO.

2.3. Method Validation

Results of the validation experiment for milk and muscle samples were in line with
criteria laid down in European Commission documents [26]. During the selectivity ex-
periment using other veterinary drugs, we did not observe any interference peak in the
retention time of analytes in the scope of the presented method. The working ranges for
both matrices were tested performing the F-test, and results fit the linear regression model.
The recovery obtained for milk was in the range of 86.3% for 5-hydroxyflunixin to 108% for
both flufenamic (FLUF) and mefenamic (MEF) acids. For precision, the highest values for
the coefficient of variance (CV) were obtained for PBZ and DC—17.0% and 16.2%, respec-
tively. For muscle samples, recoveries were all in the range between 85% to 110%, with the
lower value of 85.0% for firocoxib to the highest equal to 109% for rofecoxib (ROFE). Given
precision (CV%), the highest values were found for 4-MMA—16.6%. Calculated values of
CCα and CCβ confirm the method is fit for purpose as a routine method for determining
NSAIDs in milk and muscle samples. Results of the validation experiment were in line
with work published by other authors [11,16,19]. The most significant discrepancies can be
found for precision. Values of coefficient of variance obtained using our method are higher
than in other authors’ methods, especially in milk samples (DC, CPF, MEL). It should
be noted that PBZ is considered one of the most difficult analytes in the NSAIDs group
because it reasonably quickly undergoes oxidation [27]. Diclofenac is also an analytical
challenge because its MRL level in milk is significantly lower than other analytes.

2.4. Real Samples Analysis

The developed method has been routinely used for analysing samples collected in Na-
tional Residue Control Plan in Poland since 2019. In 2019, for 240 analysed samples (includ-
ing 209 muscle and 31 milk samples), only one milk sample was identified as non-compliant
(DC—3.50 µg/kg; Figure 2). The stated concentration was 35 times higher than the MRL
value for DC in milk. In 2020, 233 samples were analysed (197 muscles and 36 milk),
from which one muscle sample was found non-compliant (MEL—279 µg/kg; Figure 3),
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exceeding almost 13 times the MRL value for meloxicam in muscle (see Table 1). Although
the transgressions were severe, only two samples were identified as non-compliant in a
two-years period, which make 0.42% of all analysed samples.
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3. Material and Methods
3.1. Reagents and Chemicals

Acetonitrile (ACN), methanol (MeOH), and dimethyl sulfoxide (DMSO), all three
LC-MS grades, were obtained from J.T. Baker, Germany. Formic acid (≥95%), ascorbic acid
(puriss p.a.), ammonium formate (puriss p.a.), and β-glucuronidase from Helix pomatia
(HP-2) were from Sigma-Aldrich, Germany. Merck supplied acetic acid (100%). Ammo-
nium acetate was from Chempur, Poland, sodium acetate (puriss p.a.) was purchased
from POCH, Poland. Octadecyl bulk sorbent was from Avantor, USA. Ultrapure wa-
ter (resistance >18 mΩ) was obtained from the Milli-Q system (Millipore, France). The
analytical standards were supplied by the following manufacturers: diclofenac (DC), flu-
nixin meglumine (FLU), 5-hydroxy flunixin (5-OH FLU), carprofen (CPF), ketoprofen
(KTP), mefenamic acid (MEF), tolfenamic acid (TOL), niflumic acid (NIF), flufenamic acid
(FLUF), meloxicam sodium (MEL), naproxen (NAP), celecoxib (CELE), ibuprofen (IBU),
meloxicam-d3 (MEL-d3), diclofenac-13C6 (DC-13C6), phenylbutazone (PBZ), flunixin-d3
(FLU-d3), phenylbutazone-13C12 (PBZ-13C12), 4-aminoantipyrine (4-AA)—Sigma-Aldrich,
Germany; rofecoxib (ROFE), oxyphenbutazone monohydrate (OPB), firocoxib (FIRO),
4-methylaminoantipyrine (4-MAA), 4-formylaminoantipyrine (4-FAA), 4-acetylaminoan-
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tipyrine (4-AcAA)—LGC Standard, UK; ibuprofen 13C3 (IBU-13C3)—Cambridge Iso-
topes Laboratories, USA; fircoxib-d6 (FIRO-d6) and tolfenamic acid-13C6 (TOL-13C6)—
Witega, Germany.

3.2. Standard Solutions, Buffers, and Samples

Stock solutions were prepared in MeOH in a concentration of 1 mg/mL and stored at
−18 ◦C (stable for 12 months). Working standard solutions (100 µg/mL) were prepared
by diluting the proper stock solution with MeOH and were stable for 6 months. Three
mixed standard solutions were prepared by the dilution of suitable aliquots of working
standard solutions. The first one was fitted for analyses of muscle tissue; the second was
used for milk, and the third one was the internal standard mixed solution used in muscle
and milk analyses. The concentration of the internal standard was set to 2 µg/mL for all the
compounds used. Acetate buffer used for the enzymatic hydrolysis in the muscle analysis
contained sodium acetate (0.33 M) and ascorbic acid (0.01 M), dissolved in ultrapure water.
The pH was adjusted to 4.5 with acetic acid.

3.3. Instrumentation

During sample preparation, a vortex mixer (Heidolph, Schwabach, Germany), labora-
tory centrifuge (Sigma 6k15, Darmstadt, Germany), mini-centrifuge (Sigma1-14, Germany),
nitrogen evaporator (EVA-EC2-L, VLM, Bielefeld, Germany), and laboratory incubator
(e2, Advantage Lab, Darmstadt, Germany) were used. The analysis was performed using
a liquid chromatograph (Nexera X2, Shimadzu, Kyoto, Japan) connected to a tandem
mass spectrometer (QTrap 5500, Sciex, Concord, ON, Canada), controlled by Analyst
1.7 software.

3.4. Optimisation of LC-MS/MS Conditions

For each compound, the mass spectrometry parameters were optimised by injecting
working solutions of 10 µg/mL directly into the instrument by an in-built syringe pump.
The fragmentation parameters were investigated for each compound individually by
monitoring precursor and at least two product ions. For internal standards, only one
product ion was monitored. Crucial MS parameters for acquiring and identifying the
analysed compounds such as transitions, collision energy, and internal standards for the
individual compounds are listed in Table S1 in Supplementary Materials.

3.5. Sample Preparation
3.5.1. Milk

10 ± 0.01 g of milk was weighed into a 50 mL-polypropylene centrifuge tube, and
20 µL of IS solution was added. The sample was vortex-mixed and incubated at room
temperature for 10 min. Then, 10 mL of ACN was added. The sample was vigorously
mixed on the vortex for 1 min. Then, 2 g of ammonium acetate was added. The sample
was mixed for 1 min once again and centrifuged for 10 min at −20 ◦C (4500 rpm). The
upper layer of the extract was collected, transferred into a 15 mL-polypropylene tube with
1 g of C18 bulk sorbent, and vortexed once again for 1 min. The sample was centrifuged for
3 min at room temperature (4500 rpm). A volume of 6 mL of the upper layer was collected,
evaporated to dryness, and reconstituted in 0.2 mL of DMSO. The sample was transferred
into the 1.5 mL Eppendorf tube, centrifuged for 10 min at 14,500 rpm, and put into the
autosampler vial and analysed by LC-MS/MS.

3.5.2. Muscle Tissue

Homogenised muscle sample (2 ± 0.01 g) was weighed into a 50 mL polypropylene
centrifuge tube, and 20 µL of IS solution was added. The sample was vortex-mixed and
left to rest at room temperature for 10 min. Next, 4 mL of acetate buffer (pH = 4.5) and
50 µL of β-glucuronidase were added. The sample was well vortex-mixed for 1 min and
left for incubation at 37 ◦C for 60 min. Next, 10 mL of acetonitrile was added. The sample
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was vigorously vortex-mixed for 1 min and centrifuged (10 min, 4500 rpm, −20 ◦C). The
upper layer of the extract was collected, transferred into a 15 mL-polypropylene tube with
1 g of C18 bulk sorbent, and vortexed once again for 1 min. The sample was centrifuged
for 3 min at 4500 rpm at room temperature. A volume of 6 mL of the upper layer was
collected, evaporated to dryness, and reconstituted in 0.2 mL of DMSO. The sample was
transferred into the 1.5 mL Eppendorf tube, centrifuged for 10 min at 14,500 rpm, and put
into the autosampler vial and analysed by LC-MS/MS.

3.6. LC-MS/MS Analysis

The chromatographic separation was carried out on a Luna C8 column (3 µm,
2.1 × 150 mm, Phenomenex, Torrance, CA, USA) connected to a C8 guard column
(2.0 × 4 mm, Phenomenex, USA). The gradient was applied with MeOH/ACN (8 + 2,
v + v) and 0.01 M ammonium formate, pH = 5.0 (phase B). The initial conditions of the
gradient were kept for 6 min at 10% of phase A and 90% of phase B. The phase A content
was increased from the 7th minute up to 60% and maintained so until the 11th minute.
Next, phase A content was decreased to 10% for re-equilibration. The total run time of the
method was 23 min. The flow rate was 0.2 mL min−1, the injection volume was 10 µL, and
the column temperature was 40 ◦C.

The optimised multi-residue MS/MS method was based on positive and negative
electrospray ionisation (ESI) with nitrogen collision gas (Table 2). The capillary temperature
was set to 275 ◦C, vaporiser temperature was 450 ◦C. Sheath gas pressure was set to 45 units,
and the auxiliary valve flow was set to 30.

Table 2. Validation data for analyses of milk samples.

Analyte Range (µg/kg) Validation
Level (µg/kg) Recovery (%) Precision (CV, %) ccα (µg/kg) ccβ (µg/kg)

CELE 1.25–25.0 5.00 105 12.7 3.08 3.86
CPF 1.25–25.0 5.00 104 8.83 2.64 3.09
DC 0.025–0.50 0.10 99.7 16.2 0.15 0.22

FIRO 1.25–25.0 5.00 103 14.6 3.58 4.99
FLU 1.25–25.0 5.00 88.0 5.68 3.21 3.69

FLUF 1.25–25.0 5.00 108 9.54 2.70 3.25
IBU 1.25–25.0 5.00 95.3 11.2 3.61 4.48
KTP 1.25–25.0 5.00 108 6.21 2.66 2.95
MEF 1.25–25.0 5.00 108 11.7 2.67 3.11
MEL 3.75–75.0 15.0 102 8.22 16.8 18.8
NAP 1.25–25.0 5.00 103 10.3 2.95 3.41
NIF 1.25–25.0 5.00 105 10.9 2.55 2.92
OPZ 1.25–25.0 5.00 106 7.72 2.89 3.31
PBZ 1.25–25.0 5.00 106 17.0 3.26 4.32

ROFE 1.25–25.0 5.00 94.5 15.6 3.74 5.03
TOLF 12.5–250 50.0 95.3 13.0 56.0 70.3
4-AA 1.25–25.0 5.00 105 10.9 3.03 3.96

4-AcAA 1.25–25.0 5.00 101 5.51 2.87 3.21
4-FAA 1.25–25.0 5.00 108 12.9 2.76 3.41
4-MAA 12.5–250 50.0 95.3 13.0 56.0 70.3

5-OH FLU 10.0–200 40.0 86.3 13.3 45.9 59.4

3.7. Validation Concept

According to CD 2002/657/EC [27], the validation of the method was performed
separately for muscle and milk. The parameters considered in this study were selectivity,
recovery, precision as a within laboratory reproducibility, the decision limit (CCα), and the
detection capability (CCβ). Because the maximum residue level (MRL) varies for different
analytes and species, the designed validation protocol was modified to correspond to
MRLs regulated by law, recommended concentration, and analytical experience. Thus, the
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authors decided to set a validation level for analytes without MRL by following the as low
as reasonably achievable (ALARA) approach (Tables 2 and 3). Validation of the method
was performed on the National Residue Control Plan samples, which were analysed before
validation and identified as blank samples.

Table 3. Validation data for analyses of muscle samples.

Analyte Range (µg/kg) Validation
Level (µg/kg) Recovery (%) Precision (CV. %) ccα (µg/kg) ccβ (µg/kg)

CELE 1.25–25.0 5.00 93.8 7.14 5.65 6.46
CPF 5.00–1000 20.0 101 13.7 6.45 790
DC 1.25–25.0 5.00 102 6.71 5.59 6.28

FIRO 2.50–50.0 10.0 85.0 7.62 10.4 12.1
FLU 2.50–100 10.0 96.0 16.1 14.2 19.1

FLUF 1.25–25.0 5.00 101 4.73 5.69 7.22
IBU 2.50–50.0 10.0 85.7 13.1 11.0 13.6
KTP 1.25–25.0 5.00 98.6 9.75 5.67 6.45
MEF 5.00–100 20.0 105 6.77 23.6 26.9
MEL 5.00–100 20.0 99.3 7.91 22.6 24.8
NAP 2.50–50.0 10.0 97.7 15.7 12.9 17.7
NIF 1.25–25.0 5.00 104 7.67 5.56 4.48
OPB 1.25–25.0 5.00 103 8.14 5.85 6.96
PBZ 1.25–25.0 5.00 104 12.3 5.88 7.15

ROFE 1.25–25.0 5.00 109 9.63 5.88 7.08
TOLF 12.5–250 50.0 101 6.02 57.1 65.6
4-AA 2.50–50.0 10.0 92.2 15.6 12.8 18.0

4-AcAA 2.50–50.0 10.0 94.6 11.7 12.2 15.8
4-FAA 2.50–50.0 10.0 101 16.1 14.2 19.1
4-MAA 2.50–200 10.0 105 16.6 12.3 146

3.7.1. Selectivity

To investigate the potential interference of the compounds with the matrix (selectiv-
ity), 20 blank muscle samples from different species (horse, bovine, swine) and 20 cow
milk samples were analysed. In addition, standard mixtures of other veterinary drugs
(antibiotics and anthelmintic) were injected.

3.7.2. Recovery and Precision (Repeatability and Within-Laboratory Reproducibility)

Blank samples of muscle and milk fortified on 0.5, 1.0, and 1.5 of the MRL/validation
level were analysed in six replicates for each level. The whole procedure was repeated two
more times on two different days. The recovery for selected validation levels and set MRLs
should meet the requirements from CD 2002/657/EC [27] for quantitative methods: for
mass fraction ≤ 1 µg/kg should be between −50% and +20%, for fraction >1 to 10 µg/kg—
between −30% and +10%, and for fraction ≥ 10 µg/kg—between −20% and +10%.

3.7.3. The Decision Limit (CCα) and Detection Capability (CCβ)

These parameters were established by analysing samples from a reproducibility study,
fortified at 1.0 mL according to the procedure described in the CD 2002/657/EC [27] and
the guidance paper CRLs view on the state of the art analytical methods for National
Residue Control Plans [17]. CCα is equal to the concentration of 1.0 mL plus 1.64 times
the calculated standard deviation, while CCβ is equal to the CCα plus 1.64 times the
standard deviation.

3.7.4. Working Range

The working range was established by preparing three series of matrix-matched
calibration curves at the following levels: 0.25, 0.5, 1.0, 2.0, 5.0 MRL/validation level.
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4. Conclusions

The method described in this paper was successfully developed and validated for
analysing residues of NSAIDs in milk and muscle samples. Thanks to sample preparation,
LC and MS parameters for both milk and muscle were unified. This method can be easily
applied in routine NSAIDs analysis.

Supplementary Materials: The following are available online, Table S1: Mass spectrometry parame-
ters for 21 NSAIDs and corresponding internal standards on QTrap 5500.
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