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Geographics and bacterial networks
differently shape the acquired and latent
global sewage resistomes

Hannah-Marie Martiny 1,123 , Patrick Munk 1,123 , Alessandro Fuschi 2,
Ágnes Becsei3, Nikiforos Pyrounakis1, Christian Brinch 1, Global Sewage Con-
sortium*, D. G. Joakim Larsson 4, Marion Koopmans 5, Daniel Remondini 2,
István Csabai3 & Frank M. Aarestrup 1

Antimicrobial resistance genes (ARGs) have rapidly emerged and spread
globally, but the pathways driving their spread remain poorly understood. We
analyzed 1240 sewage samples from 351 cities across 111 countries, comparing
ARGs known to be mobilized with those identified through functional meta-
genomics (FG). FG ARGs showed stronger associations with bacterial taxa than
the acquired ARGs. Network analyses further confirmed this and showed
potential for source attribution of both known and novel ARGs. The FG
resistomewasmore evenly dispersed globally, whereas the acquired resistome
followed distinct geographical patterns. City-wise distance-decay analyses
revealed that the FG ARGs showed significant decay within countries but not
across regions or globally. In contrast, acquired ARGs showed decay at both
national and regional scales. At the variant level, both ARG groups had sig-
nificant national and regional distance-decay effects, but only FG ARGs at a
global scale. Additionally, we observed stronger distance effects in Sub-
Saharan Africa and East Asia compared toNorth America. Our findings suggest
that differential selection and niche competition, rather than dispersal, shape
the global resistome patterns. A limited number of bacterial taxa may act as
reservoirs of latent FG ARGs, highlighting the need of targeted surveillance to
mitigate future resistance threats.

Acquired resistance to antimicrobials among bacteria is a significant
and increasing problem. It is difficult to assess the global burden of
antimicrobial resistance (AMR), but global mortality has been esti-
mated to be 1.14 million deaths in 20211, with African regions being
disproportionately affected and estimated to increase to 1.91M by
20502. Another study predicts an average loss of 1.8 years of life
expectancy globally by 2035, along with an additional cost of US$ 855

billion per year in extra healthcare costs and lost workforce pro-
ductivity, or ~1% of the global economy3.

Antimicrobial resistance genes (ARGs) are ancient and naturally
occur in bacteria across diverse environments4–9; however, their rapid
emergence in the clinic and global dissemination have been largely
driven by human activities. Most resistome studies focus on those so-
called acquired ARGs that have been mobilized from their origin and

Received: 5 February 2025

Accepted: 28 October 2025

Check for updates

1ResearchGroup for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark. 2Department of Physics and Astronomy (DIFA), University of
Bologna, Bologna, Italy. 3Department of Physics of Complex Systems, ELTE Eötvös LorándUniversity, Budapest, Hungary. 4Department of Infectious Diseases,
Institute of Biomedicine, University of Gothenburg, and Centre for Antibiotic Resistance Research in Gothenburg, Gothenburg, Sweden. 5Erasmus Medical
Centre, Rotterdam, TheNetherlands. 123These authors contributed equally: Hannah-MarieMartiny, PatrickMunk.*A list of authors and their affiliations appears
at the end of the paper. e-mail: pmun@food.dtu.dk; hanmar@food.dtu.dk

Nature Communications |        (2025) 16:10278 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6733-7888
http://orcid.org/0000-0001-6733-7888
http://orcid.org/0000-0001-6733-7888
http://orcid.org/0000-0001-6733-7888
http://orcid.org/0000-0001-6733-7888
http://orcid.org/0000-0001-8813-4019
http://orcid.org/0000-0001-8813-4019
http://orcid.org/0000-0001-8813-4019
http://orcid.org/0000-0001-8813-4019
http://orcid.org/0000-0001-8813-4019
http://orcid.org/0000-0002-9524-5785
http://orcid.org/0000-0002-9524-5785
http://orcid.org/0000-0002-9524-5785
http://orcid.org/0000-0002-9524-5785
http://orcid.org/0000-0002-9524-5785
http://orcid.org/0000-0002-5074-7183
http://orcid.org/0000-0002-5074-7183
http://orcid.org/0000-0002-5074-7183
http://orcid.org/0000-0002-5074-7183
http://orcid.org/0000-0002-5074-7183
http://orcid.org/0000-0002-5496-0328
http://orcid.org/0000-0002-5496-0328
http://orcid.org/0000-0002-5496-0328
http://orcid.org/0000-0002-5496-0328
http://orcid.org/0000-0002-5496-0328
http://orcid.org/0000-0002-5204-2312
http://orcid.org/0000-0002-5204-2312
http://orcid.org/0000-0002-5204-2312
http://orcid.org/0000-0002-5204-2312
http://orcid.org/0000-0002-5204-2312
http://orcid.org/0000-0003-3185-7456
http://orcid.org/0000-0003-3185-7456
http://orcid.org/0000-0003-3185-7456
http://orcid.org/0000-0003-3185-7456
http://orcid.org/0000-0003-3185-7456
http://orcid.org/0000-0002-7116-2723
http://orcid.org/0000-0002-7116-2723
http://orcid.org/0000-0002-7116-2723
http://orcid.org/0000-0002-7116-2723
http://orcid.org/0000-0002-7116-2723
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-66070-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-66070-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-66070-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-66070-7&domain=pdf
mailto:pmun@food.dtu.dk
mailto:hanmar@food.dtu.dk
www.nature.com/naturecommunications


transferred between species10–12, but this likely only represents a small
subset of the total resistome10, where it has been suggested that only
between 5 and 15%of all ARGs are being studied, as predicted in silico11.

In silico prediction does not prove the functionality of a given
gene. However, anothermethod of discovering newARGs is functional
metagenomics (FG), which, based on random cloning and phenotypic
selection, has revealed a diverse resistome across many bacterial
communities13,14. While many of these novel ARGs, or FG ARGs, iden-
tified either in silico or in vitro, likely are intrinsic genes of environ-
mental bacteria and have not been acquired by other bacteria, they
represent a latent reservoir of resistance thatmight bemobilized in the
future11,13. Several studies have shown that ARGs are subjected to dis-
persal limitations within and between reservoirs15–17, but a systematic
comparison of the distributions of acquired ARGs and FG ARGs has, to
our knowledge, not yet been performed.

Epidemiological tracking of ARGs could help build a general
understanding of how ARGs evolve, change hosts, and disseminate
throughout our ecosphere, and inform interventions and policies18,19.
Global compatible data, including bacterial genomic data, are, how-
ever, scarce. Sewage offers a convenient and ethical way ofmonitoring
AMR, as it integrates waste from humans, their animals, and the sur-
rounding environment20. We and others have recently utilized human
sewage to monitor AMR in large, mainly healthy human
populations15,16,20. These sewage resistome studies have found sys-
tematic differences in the abundance and diversity of acquired ARGs
between the different world regions and much variation that can nei-
ther be explained by antimicrobial use nor bacterial taxonomic com-
position, but more strongly correlated with socioeconomic, health,
and environmental factors16,21,22. Analysis of flanking sequences of a
subset of acquired ARGs has suggested each ARG has unique patterns
of dispersal limitation and global transmission, while other studies
have identified mobilization differences as a function of resistance
mechanism23.

Dividing the world into regions typically represents a grouping of
cultural, economic, historical, political, or other factors that can pro-
vide valuable insights into population differences butmight be of little
relevance concerning the dispersal limitations of ARGs. Thus, the
question remains whether it is such regional factors or simply geo-
graphical distances that limit dispersal. Distance-decay relationships
can reveal the effects of such spatial processes24. Studies have shown
that human activities significantly influenced the presence of ARGs on
coasts, but their similarity decreased as they dispersed into estuaries
and the open sea, indicating strong distance-decay gradients along
aquatic environments24,25. Most studies of distance-decay stick to a
single region, where it can be difficult to investigate whether events on
one side of the globe affect the other. However, a single study looked
into the resistomes of globally distributed lake sediments and found
that ARG compositions exhibited distance-decay relationships but
were largely shaped by bacterial community structure25.

As part of our recent efforts to combine multiple existing collec-
tions of ARG references into a single database called PanRes26, we also
included two collections of ARGs identified through functional clon-
ing, namely ResFinderFG 2.014 and the collection from Daruka et al.13.
We hypothesize that these ARGs identified through FG would bemore
strongly associated with environmental bacterial taxa and possibly
showmore substantial dispersal limitations than those ARGs that have
mobilized, in relation to our human-associated bacteria, and could
travel globally with us.

In this study, we aimed to systematically compare the abundance,
diversity, and bacterial associations of acquired ARGs with those ARGs
identified with FG. We expanded our collection of global sewage
datasets to cover samples between 2016 and 2021. Using this dataset,
we characterized the resistomes of 3131 acquired ARGs from
ResFinder19 and 4990 FG ARGs from ResFinderFG 2.014 and Daruka
et al.13. While the results confirmed the regional clustering of acquired

ARGs as shown in our previous studies15,16, we found, contrary to our
hypothesis, that the FG ARGs were much more evenly distributed
across the globe. Only in Sub-Saharan Africa were the relative abun-
dances of acquired and FG ARGs equal. Our distance-decay analyses
revealed that while the FG ARGs exhibited a continuous decay, dis-
tance did not appear to affect dispersal at the inter-regional scale. The
network analyses revealed that the FG ARGs were strongly linked with
the underlying sewage bacteriomes, suggesting that the majority of
the FG ARGs represent a latent reservoir of resistance. Together, these
findings highlight the importanceofmonitoring both the acquired and
FG ARGs to address the current and future threats of AMR.

Results
Summary of sewage sample metagenomes
The urban sewage collection included 1240 samples from 351 cities
across 111 countries, spanning all seven world regions from 2016 to
2021 (Supplementary Fig. 1). On average, each sample had 32.39 mil-
lion (M) trimmed sequence fragments (range: 0.03–515.56 (M), std:
21.82M), totaling more than 8.93 × 1010 read fragments. All trimmed
fragments were mapped and aligned against the mOTUs conserved
marker genes and the PanRes ARGs. 0.16% of these read fragments
were assigned to mOTUs and 0.04% to PanRes ARGs. In our chosen
subset of the PanRes collections, 0.019% trimmed read fragmentswere
aligned to acquired ARGs, and 0.024% to FG ARGs. See the Supple-
mentary Notes for the distribution of all PanRes ARGs.

A total of 141.07M fragments were assigned to mOTUs (sample
average: 0.10M, std: 0.05M), of these 99.4% were bacteria, 0.002%
eukaryotes, and 0.56% archaea. For the bacterial hits, the fragments
matched 13324 genera; however, 10,974 of them were placeholder
names, and 2350 were latinized bacterial genera. The most common
genera were Pseudomonas (2.91% of bacterial reads), Acinetobacter
(2.44%), Acidovorax (1.77%), Neisseria (1.36%), and Strepto-
coccus (0.87%).

We found evidence of 1052 acquired ARGs and 3095 FG ARGs,
totaling 17.28M fragments and 21.75M fragments, respectively. On
average, a sample had 0.015M fragments to acquired ARGs (range:
0.000214–0.113M, std: 0.013M) and 0.019M to FG ARGs (range:
0.000612–0.239M, std: 0.016M) (Supplementary Fig. 4a). 201
acquired ARGs and 527 FG ARGs were present in at least 50% of the
samples with resistance fragments, with 1 acquired ARG (aph(6)-id_2)
and 6 FG ARGs being present in all.

Functionally identified ARGs are more abundant and geo-
graphically widespread
In agreementwithour previousfindings on a subset of the samples, the
acquired ARGs were most abundant in Sub-Saharan Africa (SSA), the
Middle East & North Africa (MENA), and South Asia (SA) (Fig. 1a). FG
ARGs showed a higher and more evenly distributed abundance across
the regions and countries than the acquired ARGs, with particularly
high abundances in SSA and MENA (Fig. 1a, Supplementary Fig. 5,
Supplementary Fig. 6). There were also a few cases where the acquired
ARG loadwas high enough to approach FG loads, as seen in Cambodia
and Iran (Supplementary Fig. 5). Alpha diversity analyses showed a
closer relationship between the bacteriome and the FG resistomes
compared to the acquired resistomes (Supplementary Fig. 4).

We estimated the regional pan- and core-resistomes. Overall, the
sizes of the FG pan- and core-resistomes were larger than the acquired
resistome (Supplementary Fig. 6), likely due to a combination ofmore
FG references than acquired and an overall higher abundance (Sup-
plementary Fig. 3, Supplementary Fig. 4). The core resistome con-
stituted 12% and 23% of the pan-resistomes for FG and acquired genes,
respectively.

Overall, the abundance and beta diversity of the acquired ARGs
reflected the world regions, with 12% of the beta diversity explained by
regional grouping (permanova, p =0.001). In contrast, world regions
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explained only 7.4% of the FG ARG resistome (permanova, p =0.001,
Fig. 1b). World regions could better explain the beta diversity of the
combined FG collection than the two resources individually, 7.2% and
6.8% for ResFinderFG and Daruka, respectively (permanova, p =0.001,
Supplementary Fig. 7). Procrustes analyses indicated that the acquired
resistome was slightly more closely related to the bacteriome (0.88,
p =0.001) than the FG resistome (0.69, p =0.001).

Analyzing the resistomes at drug class levels showed that the
abundances of the acquired ARGs were more consistent with world
regions than for the FG ARGs, although there was a lot of unexplained
variation (permanova, p = 0.001, Supplementary Table 1). An excep-
tion was glycopeptide resistance, where regions explained just 2.6% of
the variance for acquired ARGs but 7.8% for the FG resistome (per-
manova, p =0.001). Regions only explained a minor part of the beta-
diversity of fluoroquinolone and polymyxin resistances for either ARG
collections (Table 1, Supplementary Data 6).

Urban sewage total resistome and ARG variants are subject to
distance-decay effects
Exploiting that our sampling sites were taken at distances ranging
from less than 1 km to >15,000 km, we wanted to determine the link

between sample-wise distance and metagenomic similarity using
linear distance-decay (DD) models (Fig. 2, Supplementary Table 2).
We stratified sampling pairs based on whether they included differ-
ent countries or even different regions. We observed significant
distance-decay effects between the pairwise sample distance and
resistome and bacteriome similarities, and that the rate of DD varied
over local (within country), regional, and global scales (between
regions).

However, contrary to our original hypothesis that the FG ARGs
would havemore dispersal limitations than the acquired ARGs, the DD
models suggested that there is a significant difference in the DD slopes
for acquired ARGs once outside a country (slopewithin region = −0.044,
Supplementary Table 3). TheDD slopes for the FGARGsdid not show a
significant difference at the three spatial scales (Supplementary
Table 3).

There was no detected effect of physical distance on taxonomic
compositions at national or regional scales, but at the interregional
scale, we observed a slight increase in similarity (reverse decay;
slope=0.0015; P =0.0). Mantel tests showed that the FG ARGs were
slightly more correlated to bacterial dissimilarity (ρ =0.76; P = 0.001)
than the acquired ARGs (ρ =0.7; P = 0.001)

Fig. 1 | Abundance and beta-diversity of ARGs across geographical regions.
a The country-wise ALR abundances of acquired ARGs and the FG ARGs. b, c PCA
biplots of resistance genes (98% homology grouping), in which the PCA loadings

were calculated from CLR values. Each marker represents a sewage sample and is
colored by the world region for b acquired and c FG ARGs.
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We used metaSPAdes to recover contigs from the urban sewage
samples to investigate the distance-decay patterns at the gene-variant
level. We identified 1633 different ARGs in 83,869 contigs with the
Flankophile pipeline. Among these, 28,482 contigs contained 452 dif-
ferent acquired ARGs, and 56,091 contigs contained 1181 different
FG ARGs.

We found 27,217 variants of these known reference sequences,
including 6098 variants of acquired genes (median: 3 variants/ARG,
range: 1–269) and 21,119 FG ARGs (median: 4 variants/ARG, range:
1–325). Only 1060 of the ResFinder ARG variants and 3283 of the
functionally identified ARG variants were observed more than once.
Most of these were only found in a single or a few cities and countries,
despite observing some variants in more than 300 cities (Supple-
mentary Fig. 8).

For presence within and between regions, we observed an initial
drop in prevalence in the countries, followed by an uptick in regional
prevalence of different ARG variants (Supplementary Fig. S8a, b).
Clustering cities based on acquired ARG variants resulted in strong
regional grouping (Fig. 3a). However, clustering on FG variants did not
(Fig. 3b). For example, cities in SSA and SA were more separated in
their acquired variants from the rest of the world, except Pretoria,
which clustered more with European and Central Asian cities.

Geographic distances between cities were strongly negatively
correlated with ARG variant sharing (Fig. 3c, d; Supplementary
Table 2). However, this effect completely disappeared at the inter-
regional scale for acquired ARGs (slope = −0.01; P = 0.11). The FG
genes behaved differently with distance, continuing to decay
gene variant similarity sharing across regions (slope = −0.084;
P = 1.7 × 10−102). Mantel tests over all the spatial scales suggested that
physical distance was more correlated to acquired variant sharing
(ρ = 0.6; P = 0.001) than to FG variant sharing (ρ = 0.32; P = 0.001,
Supplementary Table 2).

The individual distance-decay relationships for each world region
revealed that these effects mirror the global trends (Supplementary
Fig. 9) butwith greater variation (Supplementary Table 4), likely due to
fewer data points available for specific regions (Supplementary Fig. 1).
Interestingly, the acquired resistomes for East Asia & Pacific and SSA
had some of the steepest declines in similarities between countries
with slopes of −0.1 (P <0.001, Supplementary Table 4), suggesting less
connectivity between cities in those countries. Oppositely, there were
only weak slopes for North American resistomes, indicating that
despite large distances, the similarity of cities in North America does
not decrease significantly.

Network community detection reveals clustering of fecal bac-
teria and community clustering of acquired and FG resistomes
To elucidate the global dynamics of the sewage resistome, we con-
structed a correlation network integrating abundance data on bac-
terial species and ARGs (Supplementary Data Files 3–5). The network
was reconstructed on a subset of elements consistently detected
worldwide to effectively manage the typical sparsity of metagenomic
data (details in Methods). This subset included 1865 mOTUs, 252 FG
ARGs, and 71 acquired ARGs, with the latter tending to show a less
uniform global spread.

The resulting network exhibited a sparse correlation structure
with an edge density of ~1.1%, with ~25% of the edges connecting bac-
terial species and ARGs, and 857 (~40%) of the vertices were isolated,
showing no relevant relationships. Furthermore, the network demon-
strated a pronounced community structure with amodularity index of
0.7, indicating tightly interconnected distinct clusters of bacteria and
ARGs likely originating from diverse ecological, environmental, and
human-associated sources (Fig. 4). We observed that the six main
communities detected in the network (Fig. 4b) contained 226 FG and
55 acquired ARGs and varied greatly in their number of elements,
composition, and connectivity. Detailed plots of each community are
in Supplementary Fig. 10.

The prevalence of human gut-associated species was noticeably
high in communities 1 and6, with 70% (115 species) in community 1 and
79% (49 species) in community 6. Therewere other notable differences
in the composition of these two communities. In community 1, 78% of
the human-associated microbiome species belonged to the phylum
Bacillota (formerly known as Firmicutes), and other phyla included
Actinomycetota (11%), Pseudomonadota (6%), Euryarchaeota (1%), and
Mycoplasmadota (1%) (Supplementary Fig. 10a, Supplementary Fig. 12).
In contrast, in community 6, 67% of the human-associated bacteria
were members of the phylum Bacteroidota (formerly known as Bac-
teroidetes), with other phyla being Pseudomonadota (18%), Bacillota
(8%), Fusobacteria (2%), and Spirochaetota (2%) (Supplementary
Fig. 10f, Supplementary Fig. 12). The number of ARGs present in the
two communities also differed greatly, as two acquired and 46 FG
ARGs were part of community 1, and only two acquired and eight FG
ARGs in community 6. Interestingly, 16 of the 46 FG genes in com-
munity 1 conferred resistance to glycopeptides (33%).

Community 2 showed low connectivity (around 2% internal edge
density), especially compared to other communities (Supplementary
Fig. 10b). It comprises 278 mOTUs, including 26 functional and 14
acquired ARGs. About 65% of its members are unassigned bacterial
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species that serve as both abundant and central nodes. Among these,
Bacteria ext_mOTU_v3_18373 and Bacteria ext_mOTU_v3_18384 exhibit
particularly high connectivity and abundance, though their phyla
remain unclassified. Beyond these two species, the other central taxa
are also unidentified but span various families, including Acid-
aminococcaceae, Atopobiaceae, Comamonadaceae, Eubacteriaceae,
Moraxellaceae, Selenomonadaceae, Sporomusaceae, and Synergista-
ceae. The only central, fully classified species are Brachymonas deni-
trificans and Acinetobacter towneri.

Community 3 contained the largest number of different acquired
ARGs including macrolide resistance genes (mef(c), mef(b), mph(e),
mph(g), and msr(d)); lincosamide resistance genes (lnu(b)and lnu(d));
and aminoglycoside resistance genes (aadA variants and ant(6)-Ia).
This community also encompassed a diverse range of bacterial taxa,
including Acinetobacter, Chryseobacterium, and Flavobacterium, as

well as some human-associated species such as Acinetobacter johnso-
nii, Akkermansia muciniphila, Dialister invisus, and Lactococcus lactis.
Notably, it contained a large proportion of unassigned taxa (Supple-
mentary Fig. 10c).

Community 4was distinguished by its uniformcomposition and a
very high prevalence of FG ARGs (Supplementary Fig. 10d). This
community exclusively consisted of bacteria from the Enterobacter-
iaceae family (19 species) and comprised 126 nodes, ~85% of which
were ARGs. Central to this community were Escherichia coli and Kleb-
siella pneumoniae, which, along with 17 other closely related species,
formed a tightly knit group. These bacteria were associated with a
diverse array of ARGs, specifically 104 FG ARGs.

Community 5 exhibited a coherent structure consisting of 113
elements, where 90 were bacteria and 23 ARGs (Supplementary
Fig. 10e). This community predominantly included 65 bacteria from
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Fig. 3 | UMAP and distance-decay analysis of resistomes. UMAP clustering of
shared variants among the cities for a acquired ARGs and b FG ARGs. Only cities
withmore than 100 non-singleton alleles were retained, and Hellinger transformed
and clustered with the UMAP algorithm. Each marker represents a city, colored by
region and sized by the number of unique variants in that city. City labels were
optimized using the ggrepel package to minimize overlap. Distance-decay rela-
tionships for assembled city resistomes acrossdifferent spatial scales forc acquired

(n = 4656 pairwise comparisons) and d the FG variants (n = 16,471 pairwise com-
parisons). The x-axis shows the pairwise city distances in kilometers (km), and the y-
axis shows resistome similarities. Thedashed line represents thefit across all spatial
scales and individual fits in solid: cities within the same country, cities within the
same region, and cities that are in different regions (between regions). Model
parameters and adjusted R² values are listed for each model in its
corresponding plot.
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the Pseudomonadaceae family, seven from the Moraxellaceae family,
and five from the Yersiniaceae family. The extraordinary internal con-
nectivity of Pseudomonadaceae, with an edge density reaching a sur-
prising 85%, defines the robust structure of this community.
Additionally, the ARGs in this community were especially well-
connected to the Pseudomonadaceae core, far more than to other
families. These mainly functional ARGs conferred resistance to beta-
lactams, fluoroquinolones, polymyxins, and tetracyclines.

Discussion
Continuous monitoring of the distribution and dissemination of AMR
across different environments remains a critical task1,27, and we have
previously shown how sewage sampling can effectively support such
surveillance activities15,16,28. While multiple studies have shown how
populations of bacteria in various environments can be carriers of
ARGs18,27,29, existing reference gene databases primarily contain ARGs
encountered in clinical settings11,14.

In this study, we sought to investigate the differences in diversity
and abundance of the acquired ARGs from the ResFinder12 database
with two collections of ARGs identified with FG13,14. The culture-
independent approach of FG offers an opportunity to identify ARGs in
both environmental and human-associatedmicrobial populations that
have not been characterized before30,31. By analyzing our global col-
lection of 1240 untreated wastewater samples from 111 countries

sampled between 2016 and 2021, we found that functionally identified
ARGs (FGARGs) weremore globally dispersed in the sewage resistome
than acquired ARGs. This suggests that novel resistance mechanisms
might emerge in any geographical location and that possible global
hotspots are not dependent on the genomic availability but rather on
anthropogenic factors such as selection and transmission.

We confirmed our earlier wastewater studies suggested a regional
separation of the acquired ARG abundances15,16, but we also found that
this regional signal appeared weaker in this study. Regions could only
explain 12%of thebeta diversity for the acquiredARGs and even less, at
7.4% for the FG ARGs. We decided to investigate the distance-decay
(DD) patterns to elucidate whether the dissemination of ARGs faces
significant barriers. Numerous studies have shown that the decay of
similarity with geographical distances is a universal pattern observed
across all domains of life32–37. Ourmodels, based on both city-wise read
abundances and the proportion of shared ARG variants, showed sig-
nificant DD effects for both the acquired and FG ARGs. However, the
slopes of these relationships varied across spatial scales. The acquired
ARGs showed a strong negative correlation within a region, but the
effect disappeared at inter-regional scales. This pattern could perhaps
be due to regional-specific selective pressures related to population
differences or competitive exclusion; if an ARG encoding a similar
phenotype has already established itself at a specific site, another
variant will be excluded. In contrast, the FG ARGs exhibited a more

a b

0

100

200

300

1 2 3 4 5 6
Communities

Source
Acquired ARGs

FG ARGs

Human−Gut mOTUs

Enterobacteriaceae
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Fig. 4 | The core of the correlation network of the abundances of bacteria and
ARGs in thewastewater samples. Eachnode represents either a species or anARG,
where an edge is the positive (blue) or negative (red) correlation between two
nodes. The nodes are shaped by the database source (mOTU, acquired, or FG) and
sized by the mean CLR value across samples. a Network graph showing the

distribution of species and ARG, where a node is colored by eithermOTU family or
antimicrobial resistance class. b Network graph showing the communities detec-
ted. Nodes are here colored bywhether they are anARGor if the bacterial species is
related to the humangut. The edge colors of the nodes highlight which community
they were part of. c The count of the type of nodes in each community.
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gradual and continuous global decay, suggesting that while they are
more globally dispersed, their disseminationmight be shaped by other
processes than physical distances, such as environmental conditions
or ecological differences32,33,38–40. It should be noted that the observed
DD effects might be influenced by the unequal representation of
samples from the different regions, with most samples originating
from Europe. The spatial patterns of ARGs may also reflect the
underlying microbial community structure in the sewage systems, as
we observed that FG ARGs were more linked to the bacteriome than
the acquired ARGs. This suggests that the majority of FG ARGs were
likely still embedded in their original genomic contexts and have not
yet been mobilized, representing a latent reservoir of resistance.

To further investigate the bacteriome-resistome relationship, we
used network analyses based on read abundances to identify six main
communities of bacterial taxa correlated with ARGs. Two of these
communities contained primarily taxa associated with human gut
samples, confirming our recent study that it might be feasible to
source attribute taxa and ARGs17. Interestingly, one was dominated by
Bacillota (community 1) and the other one by Bacterioidota (commu-
nity 6), twophyla that together account for over 90%of the abundance
of the detected species in humangutmicrobiota41,42, and their ratio can
be a potential indicator of various physiological and pathological
states43–45. Community 4 had the largest amount of FG ARGs, and
central to this community were Enterobacteriaceae nodes, specifically
E. coli andK. pneumoniae. These two in community 4maypartly reflect
methodological biases, as both E. coli and K. pneumoniae have been
used as bacterial hosts in functional metagenomic studies13,46. Com-
munity 3 had the highest count of acquired ARGs and contained both
environmental and human-associated taxa, which could indicate
multiple context locations. The presence of ARGs and human-gut-
associated taxa in the detected network communities could indicate a
potential for faster dissemination and align with the acquired DD
slopes, as it has recently been shown that human-associated bacteria
displayed faster dispersal rates35.

Whether including FG ARGs in resistome studies and reference
databases is clinically relevant remains an open question. On the one
hand, FG offers a powerful way to explore the distribution of ARGs in
non-pathogenic or non-culturable bacteria that have yet to be mobi-
lized or selected for in clinical settings14,47. On the other hand, their
inclusionmay introduce toomuchnoise into resistomeanalyses, as the
FG ARGs could be part of the intrinsic resistome and just be a marker
for the bacteria they belong to, thus posing low or no threat of
becoming an issue to global health48. Careful interpretation is there-
fore required to avoid overestimating the risk associated with FG
ARGs, particularly since some of the genes may only be functionally
active under experimental settings and may serve other roles or
remain inactive in natural microbial communities. While sewage sam-
pling offers a snapshot of the resistome of a human population, it is
worth noting that sewage also contains environmental and industrial
inputs and is affected by the local climate and seasonality15,17,47. These
non-human contributions to sewage, together with unequal sampling
coverage of world regions, have likely introduced noise into the
results. This noise is particularly relevant to keep inmind for our study
of the FG ARGs, as we have seen evidence that some of the FG ARGs
appear to be in environmental taxa. Further validation of the observed
resistome patterns is necessary to elucidate the ecological and evo-
lutionary contexts of ARG dissemination and their clinical relevance
across environments beyond sewage.

Our findings demonstrate that the FG ARGs represent a latent
reservoir of resistance located globally. The functional resistome was
more associated with the bacteriome, suggesting a strong evolu-
tionary barrier to theirmobilization. Our identified distance-decay and
network communities suggested that differential selection and niche
competition, rather than dispersal, shape the global sewage resis-
tomes. The acquired ARGs likely reflect most of the current burden of

resistance. In contrast, the FG ARGs may become a future problem;
thus, including ARGs identified with FG in routine surveillance pro-
grams could serve as an early warning system for their mobilization.

Methods
Sampling and sequencing
We started by retrieving the collection of metagenomic reads and
assemblies in our previous study15. We repeated our global calls,
recruited partners, and received additional untreated sewage samples
from 2018 to 2021. The sampling, DNA extraction, library preparation,
and sequencing methods were identical to those used in our previous
work15,16.

In brief, bottles of untreated sewage were frozen by the partners
and shipped to Denmark. The untreated sewage was thawed, and
250mL of each sample was centrifuged at 10,000× g for 10min to
retain the pelleted bacteria. DNA was extracted using our previously
publishedmodified DNA extraction protocol49, and low-concentration
samples were vacuum-concentrated. All samples were shipped on dry
ice for sequencing at Admera Health (New Jersey, USA). Here, KAPA
Hyper PCR-free library preparation was used, and sequencing was
carried out on the Illumina NovaSeq6000, targeting >35M clusters,
with paired-end (2) sequencing and 150 cycles per end. We thus aimed
for at least 35M * 2 ends * 150bp= 10.5 Gbpof sequenceper sample for
comparability with previous studies. The cities from which sewage
samples were retrieved are marked in Supplementary Fig. 1, with the
number of samples from each country and sampling year. A combined
list of samples,metadata, sequencedata accessions, andother relevant
information can be found in Supplementary Data 1.

Bioinformatic processing of reads with ARGprofiler
Weprocessed the raw FASTQ sewagemetagenomes using our recently
published pipeline, ARGprofiler26 v1.0.0, with default settings. This
pipeline was designed with snakemake 7.30.150,51 to profile ARGs both
quantitatively and qualitatively in metagenomic datasets. In brief,
ARGprofiler takes the raw FASTQ reads and begins by quality checking
and trimming them with fastp52 0.23.2. Settings for fastp were set as
follows: overlap_diff_limit = 1, average_qual = 20, length_required = 50,
--cut_tail. After trimming, ARGprofiler uses KMA53 1.4.12a to do global
alignment of the trimmed reads against the two reference databases,
mOTUs54 (v3.0.3) and PanRes26 v1.0.1. The following alignment para-
meterswereused: 1,−2,−3,−1 for amatch,mismatch, gapopening, and
gap extension. For pairing of reads, we used a value of 7 and a mini-
mum relative alignment score of 0.75.

Additionally, all the new sequence runs were subjected to meta-
genomic assembly, following the same approach as in the previous
study15,16. Metagenomic assembly was done using metaSPAdes55

(SPAdes v. 3.13.0) with k-mer sizes: 27, 47, 67, 87, 107, 127 and the pre-
correction flag set. We filtered away contigs shorter than 1 Kbp due to
their large numbers and lack of synteny information, which is impor-
tant for epidemiological inference15.

Reference sequence databases. We used the PanRes database as the
reference collection for ARGs, as it incorporates multiple existing
databases of ARGs into a single non-redundant collection, totaling
14,078 unique ARGs26. This study focused on three of the included
source databases: ResFinder12, ResFinderFG 2.014, and those from
Daruka et al.8 (tagged as csabapal in PanRes). The latter two databases
are products of FG. Throughout this study, we group the references
based on their presence in ResFinder or the functional collections and
refer to them as acquired or FG respectively. The few ARGs in both
groups were uniquely counted as acquired for the purpose of this
study (Supplementary Fig. 1).

We homology reduced all PanRes reference sequences using
USEARCH56 (v.11.0.66) to 98% nucleotide identity, with query and tar-
get coverage thresholds of 98%. To maintain more alleles in the
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acquired and FG groups, we assigned cluster representatives as
acquired if they had at least one cluster member tagged as acquired
and cluster representatives as FG if they had an FG member and no
acquired cluster members (Supplementary Data 2).

ARGprofiler uses the mOTUs database54,57 (v3.0.3) with the KMA
aligner53 (v. 14.12.a) to profile the metagenomes. To deal with many
mOTUs having a placeholder name (orphans), we padded the missing
names with the highest known taxonomic ranks. All resulting KMA
mapstat files with mOTUs sequences were filtered to retain only
alignments to bacteria. For analyses of beta-diversities, we filtered
away taxonomies that made up less than 0.0001% of the reads
assigned to mOTUs across all metagenomes.

Quantifying ARGs using compositional methods
We reported the total number of read fragments aligned to the three
reference sequence sets (mOTU, Acquired, and FG), as well as the
number of unique reference hits and Shannon58 diversity for each
sewage sample.

Estimation of the regional pan- and core-resistomes was done as
follows: the number of unique ARG references hit in samples from a
region was calculated as the size of the regional pan-resistome. The
core-resistomewas then estimated as the number of unique ARGs that
were observed in at least 50% of the regional samples. The pan- and
core-resistomes were then stratified by the AMR class for each col-
lection (acquired and FG), and the subset of those classes in both
collections was plotted.

KMA reports the count of read fragments aligned to reference
sequences, which we treat as parts of a composition59. We applied the
additive log-ratio transformation (ALR) to length-adjusted ARG read
fragment counts with the sum of bacterial mOTUs reads as the refer-
ence component.

To perform statistical analysis on ARG abundances, we imputed
zeroes following procedures highlighted in previous work59. The
length-adjusted and zero-replaced abundance counts were then
transformed with the centered log-ratio (CLR) transformation, which
uses the geometric mean as the reference component60–62.

We compared sample beta diversities using Principal Component
Analysis (PCA), following the methodology outlined in previous
work60–62. The zero-imputed and length-adjusted countswere centered
by the geometric mean, scaled by the total log-ratio variance, trans-
formed into CLR values, and eigen-decomposed to obtain eigenvec-
tors and eigenvalues. These were then used to calculate the principal
components and visualized in biplots. In Python 3.1263, the
pycodamath64 package was used for the compositional analyses, and
visualization of abundances and diversities was created using mat-
plotlib 3.8.265, seaborn 0.13.266, and geopandas 0.14.367.

In R 4.3.268, the Procrustes function from the vegan 2.669 was used
to calculate the degree to which resistome and bacteriome PCA scores
correlated, and the adonis2 function was used to determine the pro-
portion of beta-diversity variance attributable to World Bank Regions.

Metagenomic ARG variants
Using themetagenomic assembled scaffolds producedbymetaSPAdes
(SPAdes v. 3.13.0), we searched for ARG variants from ResFinder and
the functional ARG collections with the Flankophile tool68 (v. 0.2.8).
Briefly, the pipeline searches assemblies for ARGs, extracts and clus-
ters them, and calls new variants.

Using the annotations of which ARGs and identified variants were
found across the assemblies, we created contingency tables summar-
izing observed occurrences of the ARG sequences (closest known
reference and specific variant) across geographical groupings (region,
country, and city). ARG sequences that were only observed once and
geographical areas with less than 100 ARG copies observed were dis-
carded. Each sample in the contingency tables was normalized using

the Hellinger transformation70, as implemented in the package vegan
2.669 for R 4.3.268.

Unimap Manifold Approximation and Projection (UMAP)71, as
implemented in the R package umap 0.2.10.072, was applied to the
normalized contingency matrices to reduce their dimensionality,
allowing a projection of the number of closest references and called
variants shared between the different cities.

Estimating distance-decay relationships
The distance-decay effects were investigated by comparing physical
distances with resistome similarities. We calculated the rate of
distance-decay as the slope of linear regression on the relationship of
ln-transformed similarities with ln-transformed distances, as outlined
in Martiny et al.32 and Nekola and White33. The physical distance
between cities was obtained by calculating geodesic distances based
on latitudes and longitudes with the R package sf 1.0.1573. Abundance
similarities were calculated as Aitchison distances (Euclidean distances
onCLR values)with the simil function from the proxyC0.4.1 package74.
Similarities of the assembled variant resistomes were calculated using
Bray-Curtis dissimilarites75 on the contingency tables as implemented
in the vegdist function in vegan 2.669.

Distances and dissimilarities were log-transformed, and linear
modelswerefitted both for comparing all samples andwithin stratified
groups of comparisons: those with cities within the same country,
cities within the same region, and cities from different world regions.
The slopes of the lines for the three different spatial groupings were
compared with the emtrends function from emmeans 1.10.576. Mantel
tests77 were applied to measure the correlation of the physical and
resistome distance matrices (not ln-transformed) with 999 permuta-
tions, as implemented in the mantel function in vegan 2.669.

Network analyses
A shared correlation network was constructed from mOTU and ARG
abundance data. To increase the signal-to-noise ratio and reduce
sparseness, we imposed a 25% sample presence prevalence threshold
for mOTUs and a median adjusted measure ≥1.

For ARGs, due to variable sample depths (as shown in Supple-
mentary Fig. 11), we excluded sampleswith total abundances below the
10th percentile. Subsequently, we applied a 25% prevalence threshold
and a median of non-zero abundances ≥0.01.

After these filtering steps, we preserved only samples that
retained <90% of the abundance for mOTUs and ARGs. This led to
912 samples organized into two matrices: 1865 mOTUs and 323 AMR
genes (252 FG, 71 Acquired).

We applied CLR transformations, replacing zeros with a pseudo-
count (65% of the detection limit)78, merged the normalized data,
calculated Spearman correlations, and derived an adjacency matrix
using anabsolute threshold of≥0.5. The resulting network is defined as
undirected, with weighted and signed links where each node repre-
sents an mOTU or an ARG, and the links represent the preserved
correlations between them. Finally, we applied a signed version of the
modularity algorithm79, capable of handling negative link weights, to
detect communities within the network.

To identify the human microbiota, we downloaded the Unified
Human Gastrointestinal Genome collection (UHGG) (v2.0.2)80 and
matched the species from this database to those in our classified
communities by their clustered names to determine the number of
human gut-associated mOTUs. The entire analysis was conducted in R
using the mgnet package v0.3-beta (https://github.com/
Fuschi/mgnet).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw sequencing reads and metagenomic assemblies have been
deposited at the EuropeanNucleotide Archive for the different rounds
of sampling, which are available under project accession numbers:
PRJEB40798, PRJEB40816, PRJEB40815, PRJEB27621, and PRJEB84064.
The processed data such as KMA mapstat files, count matrices, and
flankophile output, have been deposited on Zenodo at https://doi.org/
10.5281/zenodo.14652832. The metadata associated with the samples
and reference genes are in the Supplementary Data Files 1, 2 and net-
work data in Supplementary Data Files 3, 5. Source data are provided
with this paper. This study also utilized the Natural Earth dataset to
plot geographical shapes and the publicly available databases PanRes,
mOTUs and the UHGG catalog. Source data are provided with
this paper.

Code availability
All code used for analysis and data visualizations has been deposited
onGitHub at https://github.com/genomicepidemiology/gs3_acquired_
vs_FG81.
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