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Abstract: Bordetella trematum is a rare member of the genus Bordetella, primarily associated
with human wound infections rather than respiratory diseases. The bacterium has been
isolated from various clinical specimens, including ear inflammatory discharge, diabetic
ulcers, and chronic wounds. The study aimed to characterize the genomes and antimicrobial
resistance (AMR) profiles of B. trematum obtained from the fecal samples of asymptomatic
highland eyelash pit vipers (Bothriechis schlegelii). The identification was conducted using
MALDI-TOF mass spectrometry and biochemical tests. AMR was assessed using the
microbroth dilution method, while whole-genome sequencing was performed on the
Illumina NextSeq platform. The isolates displayed characteristic B. trematum biochemical
features and demonstrated a resistance to cefotaxime, ciprofloxacin, and trimethoprim,
while one also exhibited a resistance to ceftazidime. The whole-genome sequencing and
comparison with limited public data revealed a high diversity within B. trematum, reaching
>48,000 single nucleotide polymorphisms (SNPs), with 64 SNP differentiating tested snake
isolates and thus, being considered epidemiologically unrelated. This is the first report
of B. trematum isolated from an animal source in Europe. The findings provide valuable
insights into this rare bacterium’s phenotypic and genomic characteristics, addressing an
important knowledge gap in its ecology and AMR profile.

Keywords: Bordetella trematum; reptile; snake; WGS; antimicrobial resistance

1. Introduction
Bordetella (B.) trematum is a Gram-negative bacillus belonging to the genus Bordetella in

the family of Alcaligenaceae [1–4]. Compared to other species, the genus B. trematum remains
rare and insufficiently characterized. Bordetellae comprise species of significant importance
in human and veterinary medicine, as well as environmental bacteria [5]. Notable human
pathogens include B. pertussis, the causative agent of whooping cough, and B. parapertussis,
which has two lineages: one causing a milder whooping cough-like illness in humans
and the other affecting sheep with respiratory symptoms [5]. B. bronchiseptica colonizes
a wide variety of animals, including pigs, cats, and dogs, and causes atrophic rhinitis,
whereas B. avium affects birds suffering from respiratory diseases [6]. The first described
environmental species was B. petrii isolated from a chlorinating bioreactor enriched by river
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sediment [7]. Subsequently, three other environmental species, B. muralis, B. tumulicola,
and B. tumbae, were isolated from 1300-year-old mural paintings inside a stone chamber in
Japan [8].

Unlike other “classical” Bordetella species, B. trematum is not typically associated with
respiratory diseases but it has been primarily linked to human wound infections. Isolations
from ear inflammatory discharge, diabetic ulcers, and chronic wounds, particularly affect-
ing the lower limbs, have been reported [1,2,4]. First described in 1996, B. trematum was
identified as a novel species in the family Alcaligenaceae [1]. As an opportunistic pathogen,
B. trematum poses a potential threat to vulnerable populations, including the elderly, infants,
and immunocompromised individuals.

The bacterium is encapsulated, does not form spores, and is motile via peritrichous
flagella [9]. Due to our poor knowledge of B. trematum, there are few reports on its
biochemical characteristics [1,9]. Vandamme et al. (1996) characterized B. trematum as
non-glucose-metabolizing, catalase-positive, and urease-negative [1]. While its ability to
reduce nitrates was described as variable, lysine decarboxylation was negative. The oxidase
activity was also defined as negative, which could be a biochemical feature distinguishing
B. trematum from other Bordetella species [1].

So far, B. trematum has been mainly isolated from humans, with few reports of a
potential occurrence in animals. A single case was detected in a backyard poultry envi-
ronment in the USA [10]. Reptiles, more precisely snakes, might be potential reservoirs of
B. trematum [11,12]. The bacterium was isolated from the lungs of a captive Chinese cobra
(Naja atra) suffering from acute enteritis in Hainan, China [11]. In another study, the DNA
of B. trematum was identified from the oral cavity of the same snake species originating
from Taiwan [12]. Understanding animal reservoirs could shed light on the transmission
pathways, zoonotic potential, and environmental ecology of B. trematum.

The aim of the study was a genomic characterization of B. trematum isolated from fecal
samples of healthy captive snakes. To our knowledge, this is the first reported isolation of
this bacteria from animal sources in Europe. The study provides important information
that fills the knowledge gap regarding the phenotypic traits and genomic content of this
rare bacteria.

2. Materials and Methods
2.1. Bacteria Isolation and Identification

The isolates were obtained from fecal samples collected from two asymptomatic high-
land eyelash-pit vipers (Bothriechis schlegelii) in 2021. The samples were delivered to the
laboratory for monitoring purposes. The laboratory procedures included pre-enrichment in
buffered peptone water (BioMaxima S.A., Lublin, Poland, 1:10 v/w; 18 ± 2 h at 37 ± 1 ◦C),
followed by selective isolation on the chromogenic culture medium CHROMagar™ Acine-
tobacter (CHROMagar™, La Plaine St-Denis, France). After incubation, the growth of
purple colonies, typical for Acinetobacter but smaller than expected, were observed. The
isolates were transferred to blood agar (BioMaxima S.A., Lublin, Poland) and overnight
cultures (37 ± 1 ◦C) were identified with Matrix-Assisted Laser Desorption Ionization-Time
of Flight (MALDI-TOF) using the extraction method following the producer guidelines
(Bruker Daltonics GmbH, Bremen, Germany). Scores ≥ 2.0 were considered reliable for bac-
terial identification to the species or genus level. The biochemical features were evaluated
using the VITEK system (The Vitek 2 GN ID CARD; bioMerieux, Marcy-l’Etoile, France,
Vitek 2 software version 4.7.1). The oxidase was determined with Bactident™ Oxidase test
strips (N,N-dimethyl-p-phenylene diammonium dichloride and α-naphthol; Merck KGaA,
Darmstadt, Germany) and Oxidase Test (N,N-dimethyl-p-phenylenediamine oxalate and
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α-naphthol; Merck KGaA, Darmstadt, Germany). The 3% hydrogen peroxide slide test was
applied to detect the catalase.

Antimicrobial resistance testing was performed using the microbroth dilution method
(Sensititre®, TREK Diagnostic Systems, Thermo Fisher Scientific, Waltham, MA, USA) with
an EUVSEC3 MIC (minimal inhibitory concentration) panel used in the official antimicrobial
resistance monitoring scheme in the EU (Table 2 of the Annex to Commission Implementing
Decision (UE) 2020/1729 [13]). The panel includes 15 active compounds representing nine
antimicrobial classes: aminoglycosides, beta-lactams (including carbapenems), folate-path
inhibitors, glycylcyclines, macrolides, phenicols, polymyxins, tetracyclines and quinolones.
Escherichia coli ATCC 25922 was used as a reference strain tested in parallel with the tested
isolates. An inoculum was made, with a density of 0.5 McFarland in 0.9% NaCl (bioMerieux,
Marcy-l’Étoile, France), from a fresh culture on blood agar (Oxoid, Hampshire, United
Kingdom). Then, 10 µL was transferred to 11 mL of Cation Adjusted Mueller Hinton Broth
(ThermoFisher Scientific, Waltham, MA, USA). After thorough vortexing, 50 µL of inoculum
was added into each well of the plate, followed by overnight incubation (37 ± 1 ◦C). Since
there are no interpretation criteria for Bordetella, the MIC values were assessed according
to EUCAST guidance “When there are no breakpoints in breakpoint tables? 2024-02-29”
(https://www.eucast.org/clinical_breakpoints, accessed on 4 July 2024).

2.2. Whole-Genome Sequencing and Bioinformatic Analysis

DNA was extracted from the overnight pure blood agar culture at 37 ◦C using
Maxwell Rapid Sample Concentrator (RSC) cultured cells DNA Kit (Promega, Madison,
WI, USA). The quantity and quality of DNA were assessed using Qubit 3.0 (Thermo
Fisher Scientific) and capillary electrophoresis using Fragment Analyzer (Agilent, Santa
Clara, CA, USA). DNA libraries were constructed using the KAPA HyperPlus Kit
(Roche, Basel, Switzerland). Whole genome sequencing was performed on the Illu-
mina NextSeq (MidOutput Kit 2 × 150 bp, Illumina, San Diego, CA, USA). Short reads
were trimmed using fastp 0.20.0 [14]. The genome was assembled using Spades v3.15.3
(https://github.com/ablab/spades, accessed on 24 January 2022). CSI Phylogeny 1.4
(CGE) was applied, with the default settings, for phylogeny tree preparation based
on single nucleotide polymorphism (SNP) [15]. The available complete sequences of
B. trematum were downloaded from the National Center for Biotechnology Information
(NCBI, https://www.ncbi.nlm.nih.gov/, accessed on 30 September 2024). The online
tool iTOL v6 was applied for phylogeny tree visualization [16]. The Proksee software
(https://proksee.ca/, accessed on 6 November 2024) [17] was used for the visualization of
the genes, BLAST comparisons (BLAST Formatter 1.0.3), and gene annotations with Prokka
1.1.1 [18]. Resistance gene identification was performed using ResFinder [19] (threshold for
identity: 60%, coverage: 40%; database version: ResFinder-2.4.0) and CARD 1.2.1 [20].

3. Results
3.1. Bacteria Identification and Antimicrobial Resistance Typing

The screening of the chromogenic medium of two samples showed the suspected,
and hence, atypical growth of Acinetobacter spp., defined as very small, purple colonies.
MALDI-TOF revealed that both isolates (designated as PIW211 and PIW212) did not
belong to the Acinetobacter genus but they were perfectly identified as B. trematum. A
repeated analysis confirmed those results. The biochemical characterization showed typical
Bordetella genus properties like the lack of sugar fermentation and the hydrolyzing of
peptides (Supplementary Table S1). Both isolates exhibited the same biochemical profiles,
except for the ability of PIW211 to hydrolyze tyrosine (Supplementary Table S1). Both
isolates were catalase-positive. The oxidase test revealed different results depending on
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the derivatives used in the test. The isolates were oxidase-negative in the test containing
N,N-dimethyl-p-phenylene diammonium dichloride (Bactident™ Oxidase test strips) but
oxidase-positive in the test with N,N-dimethyl-p-phenylenediamine oxalate (Oxidase Test).

Due to the unexpected results of the MALDI-TOF evaluation, bacteria growth was
evaluated on 5% horse blood agar (BioMaxima S.A., Lublin, Poland) and CHROMagar™
Acinetobacter after incubation for 24 h, 48 h, and 72 h (Figure 1A,B). The average incubation
time of B. trematum was defined as 48–72 h for both media, but the growth on 5% horse
blood agar was more abundant, compared to the CHROMagar™ Acinetobacter originally
used for bacterium isolation.
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Figure 1. Pure cultures of B. trematum isolates PIW211 and PIW212 incubated for 24 h, 48 h, and 72 h
in aerobic conditions on 5% horse blood agar (A) and CHROMagar™ Acinetobacter (B).

The results of the antimicrobial resistance testing, detailed in Table 1, indicated that
both isolates were resistant to cefotaxime, ciprofloxacin, and trimethoprim. Additionally,
PIW211 was ceftazidime-resistant.

Table 1. Minimum inhibitory concentration (MIC) values (mg/L) for the B. trematum strains isolated
in the study. Results were interpreted according to EUCAST guidelines.

Antimicrobial PIW211 Interpretation PIW212 Interpretation

Amikacin 8 NA 8 NA
Ampicillin 2 S 2 S

Azithromycin ≤2 NA ≤2 NA
Cefotaxime >4 R >4 R
Ceftazidime 8 R 4 S

Chloramphenicol ≤8 NA ≤8 NA
Ciprofloxacin 1 R 1 R

Colistin ≤1 NA ≤1 NA
Gentamicin 2 NA 4 NA
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Table 1. Cont.

Antimicrobial PIW211 Interpretation PIW212 Interpretation

Meropenem ≤0.03 S ≤0.03 S
Nalidixic Acid 8 NA 8 NA

Sulphamethoxazole ≤8 NA ≤8 NA
Tetracycline ≤2 S ≤2 S
Tigecycline ≤0.25 NA ≤0.25 NA

Trimethoprim 16 R 16 R
NA—not interpreted due to missing interpretation criteria, S—sensitive, R—resistant.

3.2. The Genome Analysis

The PIW211 and PIW212 genomes were 4,350,381, and 4,311,189 bp in length with GC
contents of 65.45%, and 65.49%, respectively. The genomes comprised 64 and 67 contigs
with N50 values of 193,049 and 278,393 bp, respectively. The PIW211 genome was esti-
mated to contain 4036 coding sequences, whereas PIW212 had 3984. In both genomes, the
cytochrome oxidase coding sequence was not detected, while both sequences contained
bvgA and bvgS genes as a part of the two-component BvgA/BvgS system. No acquired
resistance genes (ResFinder database) were detected in both genomes except for the tmexD4
gene with 73.39% identity, conferring the resistance to tetracycline, doxycycline, minocy-
cline, and tigecycline. The CARD analysis revealed the presence of the adeF gene (99.72%
identity, 76.91% coverage), coding for the efflux pump targeting fluoroquinolones and
tetracyclines, and the fosA8 gene (96.45% identity, 54.48% coverage), which is responsible
for fosfomycin resistance.

3.3. Phylogenetic Analysis

A phylogenetic analysis of the acquired sequences with the 14 publicly available
genomes (Supplementary Table S2) showed a high diversity of the strains (Figure 2).
PIW211 and PIW212 exhibited low gene sequence diversity (64 SNP), but the distribution of
pairwise SNP distances between all tested sequences varied from 0 SNP (GCA_900078695.1
and GCA_900445945.1) to 48,427 SNP (GCA_000471705.1 and GCF_013184245.1). The
most similar genomes, GCF013184245.1, GCA900618205.1, and GCA900445905.1, were
derived from humans and forest musk deer and differed more than 16,000 SNP from the
studied genomes.
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4. Discussion
4.1. Isolation, Identification, and Potential Reservoirs of Bordetella trematum

B. trematum is a relatively newly identified bacterium, and the knowledge of its
occurrence in animals, the environment, or potential transmission is limited. The most
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relevant information refers to human infections, particularly in immunocompromised
individuals or as part of mixed infections [2,4,21–23]. The respiratory diseases in animals
are typically linked to other Bordetella species [6,24]. Currently, there is no documented
evidence of B. trematum symptomatic infections in animals. Its impact or potential zoonotic
link remains unclear. The occurrence of infections and the carriage of B. trematum in animals
are not well recognized. A single case of B. trematum isolation from backyard flock feces
and two other incidental detections in venomous snakes were documented [10–12].

Our study is the third description of B. trematum in snakes, which can indicate a specific
animal reservoir. Currently, no documented cases in the literature specifically describe
B. trematum infections linked to snakebites, which are considered a threat not only due to
the cytotoxic and proteolytic effects of venom but also due to bite injury infections [25]. The
microbes recovered from the bitten wound can reflect the oral flora of the biting snake [26].
Therefore, the possibility of infection with B. trematum in bite wounds cannot be excluded
if these bacteria are present in the oral cavity of snakes [12].

One of the main challenges in assessing animals as a potential reservoir of B. trematum
is the absence of a standardized isolation method. The known protocols recommend a
Charcoal selective agar supplemented with cefalexin for Bordetella species and an incubation
time of up to 12 days for clinical cases [27]. Due to its extended growth time, the bacterium
may be missed in standard testing. Our study revealed that the best growth time for the
reported B. trematum cultured at 37 ◦C varied between 48 and 72 h. It is in congruence with
some reports that noted that the growth after 48 h of incubation at 37 ◦C further identified
as B. trematum [28].

The other potential issue could be the discrepancies in the oxidase activity results. A
few reports describe the lack of oxidase activity and indicate it as a biochemical feature dis-
tinguishing B. trematum from other Bordetella species [1,21,22]. However, oxidase-positive
isolates were also reported [9,28]. Some studies link these discrepancies with different
derivatives used for the oxidase tests [9]. This was also observed in the current study. The
absence of the cytochrome oxidase genes in both tested B. trematum isolates supports Buech-
ler’s hypothesis that the type of derivative influences the results of the oxidase reaction and
might lead to false-positive observations [9]. A further analysis on a larger set of strains
is necessary, as this matter may encounter conflicting information, which challenges the
reliability of oxidase tests for biochemical differentiation.

4.2. Antimicrobial Resistance of Bordetella trematum

Although B. trematum is considered a relatively rare opportunistic pathogen, it has
been documented to show resistance to multiple classes of antimicrobials. The most often
noted resistance is the resistance to beta-lactams, including cephalosporines [9,22,23]. In
some reports, B. trematum also showed a resistance to fluoroquinolones like ciprofloxacin,
commonly used for treating various infections [22]. A case of resistance to trimethoprim
and sulfamethoxazole confirmed by the detection of the sul2 gene on the genome was
previously documented [9]. The currently described resistance to cefotaxime, ciprofloxacin,
and trimethoprim was partly explained by the presence of genes coding for efflux pumps
targeting tetracyclines and fluoroquinolones. Unfortunately, none of the currently known
resistance determinants could justify the observed resistance to cefotaxime and trimetho-
prim in both, and additionally, ceftazidime in one isolate. In some reports, the lack of a
genetic background, despite the presence of a cephalosporin-resistance phenotype, has
also been noted [23]. In the literature, the determinants of beta-lactam resistance belong-
ing to blaTEM or blaOXA were reported in some species of the Bordetella genus [29,30]. We
cannot exclude, due to the still scarce knowledge on B. trematum and imperfect AMR gene
databases, the presence of resistance genes in the studied genomes. Simultaneously, there
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is limited data on the interpretation criteria for many antimicrobials for B. trematum, and
the application of breakpoints for Enterobacterales was recommended in this case. Hence,
we consider the missing MIC interpretation as a limitation of this study.

4.3. Invasiveness of Bordetella

The zoonotic potential of B. trematum is not well established. However, given that
some Bordetella species, like B. bronchiseptica, are known to infect a variety of animal
species (e.g., dogs, cats, pigs), there is a possibility that B. trematum could similarly infect
animals under certain conditions. In many facultative pathogens encountering different
environmental conditions during their life cycle, the two-component system (TCS) plays
a dominant role in the expression of their virulence [31]. This system is known in the
Bordatellae, including environmental species like B. petrii but not B. homelesi [32]. In
B. pertussis, human respiratory infections are regulated by the BvgAS two-component
system, while in B. bronchiseptica, the bvg-activated genes are similarly crucial for colonizing
the animal respiratory tract [33]. The genes coding this system were identified in both of
the studied B. trematum isolates. Their expression exceeds the current report and might
trigger further in vitro and in vivo experiments.

The large-scale studies on the genomic diversity of B. trematum are currently also
lacking. The phylogenetic analysis reported here revealed a wide diversity of several
available genomes. The described strains of snake origin exhibited little genetic diversity
and were not related to both human and animal ones. An SNP analysis has shown that
isolates may differ by only a few SNPs, which was noticed in some human cases, particularly
originating from similar ecological or geographic backgrounds. A small number of genomes
limits the understanding of the population structure of B. trematum. Studies involving
more isolates from diverse hosts and environments would provide deeper insights into its
genetic variability and evolutionary trends.

5. Conclusions
This study contributes to knowledge-building on the presence and potential reservoirs

of B. trematum. An investigation of the bacterium’s ecology and pathogenicity mechanisms
could reveal more about its relation to animals. Due to the absence of a selective isolation
method, possibly also resulting in the low occurrence of B. trematum, further research
exploring B. trematum in animal hosts would be challenging. Nevertheless, our study pro-
vides an important contribution to expanding the knowledge on B. trematum, considering
both phenotype and genotype characteristics. These findings indicate areas for further
research that contribute to a more detailed understanding of the genetic diversity of this
bacterium, including the genetic background of its antimicrobial resistance, especially to
beta-lactams.
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