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Group A rotaviruses (RVAs) are widespread in humans and many animal species and represent the most epidemiologically
important rotavirus group. The aim of the study was the identification of the genotype pattern of human RVA strains circulating
in Poland, assessment of their phylogenetic relationships to pig RVAs and identification of reassortant and zoonotic virus strains.
Human stool samples which were RVA positive (n= 166) were collected from children and adults at the age of 1 month to 74 years
with symptoms of diarrhoea. Identification of the G and P genotypes of human RVAs as well as the complete genotype of
reassortant and zoonotic virus strains was performed by the use of an RT-PCR method. The G (G1–G4, G8 or G9) and/or
P (P[4], P[6], P[8] or P[9]) genotypes were determined for 148 (89.2%) out of 166 RVA strains present in human stool. G1P[8]
RVA strains prevailed, and G4P[8] (20.5%), G9P[8] (15.7%) and G2P[4] (13.3%) human RVA strains were also frequently
identified. The full genome analysis of human G4P[6] as well as pig G1P[8] and G5P[6] RVAs revealed the occurrence of
porcine–human reassortants and zoonotic RVAs. Detection of G4P[6] in pigs confirms their role as a reservoir of zoonotic RVAs.
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1. Introduction

Group A rotaviruses (RVAs) are widespread in humans and
many animal species and represent the most epidemiologi-
cally important serological group among rotaviruses [1, 2].
They are non-enveloped viruses containing double-stranded
RNA [3]. Particular segments of the genome encode infor-
mation related to formation of the structural virus proteins
(VP1, VP2, VP3, VP4, VP6 and VP7) and depending on the
RVA strain, from 5 to 6 non-structural proteins which are
involved in virus replication [4, 5]. It is noteworthy that VP4
and VP7 proteins are involved in the infection of the host cell
and induction of immune response and are the foundation
for classification of RVA strains into the G (VP7) or P (VP4)
genotype [6, 7]. The segmented structure of the virus genome
enables the occurrence of reassortment events between rota-
viruses, which rely on the exchange of viral RNA segments

between different strains co-infecting the same host [8].
Reassortment is also facilitated by the presence of animals
in close proximity to humans, when gene transfers occur
between animal and human RVAs, leading to the emergence
of zoonotic virus strains capable of crossing the species bar-
rier. The first reports of human disease caused by pig and
human reassortant RVA strains were published in the 1980s
[9–11]. In addition, G9P[19] human RVAs containing seg-
ments of the pig RVA genome have previously been detected
in Latin America and Asia [1, 9, 11–15]. Other strains that
crossed the species barrier and subsequently spread in the
human population are pig G4P[6] RVAs [16–22]. Pig G3P
[6] and G9P[6] RVAs have also caused infections in humans
[19, 22–27]. Subsequent phylogenetic analyses of virus strains
confirmed their close relationship to pig RVAs, suggesting
that animals can be a reservoir of RVAs pathogenic to
humans. However, in contrast to data on pig RVA strains
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circulating in Poland, data on molecular typing of the strains
causing infections in humans are scarce; and they do not
mirror the real prevalence of RVA strains of particular geno-
types [28, 29]. This hinders an assessment of the epidemiolog-
ical significance of infections resulting from possible zoonotic
virus transmission from pigs to humans. The aim of the study
was identification of the genotype patterns of human RVA
strains circulating in Poland, assessment of their phylogenetic
relationships to pig RVAs and identification of reassortant
and zoonotic virus strains in relation to their common regional
(provincial) occurrence in human and pig hosts.

2. Materials and Methods

2.1. Sequences of Pig RVAs From Poland. For phylogenetic
analyses assessing the relationships between pig and human
RVA strains as well as for an identification of reassortant and
zoonotic virus strains, use was made of the sequences of
RVAs detected in pigs in Poland with characteristic genotype
patterns of human RVAs (Table 1).

2.2. Stool Samples. Archival human stool samples (n= 166)
were used in the study which had been collected in the years
2013–2015 from children and adults at the age of 1 month to
74 years with symptoms of diarrhoea. The sick persons came
from the same regions (provinces) in which pigs infected
with RVA strains of genotypes characteristic of zoonotic
virus strains were raised. Samples originated from Mazovia
and Kujawy–Pomerania (21 samples), Lublin, Podkarpackie,
Pomerania and West Pomerania (20), Wielkopolska (19),
Świętokrzyskie (16) and Opole (10) provinces. The RVA
ELISA-positive faeces samples were material unused after
routine testing of stool samples for the presence of rotavirus
antigen by Polish regional medical laboratories. They were
obtained with the permission of the relevant laboratory
authorities. Samples were provided anonymously; therefore,
no patients’ personal data or medical records were disclosed.
They were stored at a temperature below −20°C until analy-
sis. The local Bioethics Committee approved this study [KE-
0254/18/01/2022].

2.3. Identification of G and P Genotypes of Human RVA
Strains. Viral RNA was extracted from stool using a QIAamp
Viral RNAMini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. Amplification of RVA gene
fragments encoding VP7 and VP4 proteins was performed
by the RT-PCR method using a OneStep RT-PCR Kit (Qia-
gen) with the following primer sets: VP7F/VP7R [30], Beg9/
End9 [31], Gen-VP4F/Con2 [32, 33] and Con3/Con2 [32].
The protocols for virus detection methods and sequencing of
the obtained PCR products as well as for identification of RVA
genotypes were previously described in detail by Kozyra [34].
The nucleotide sequences for VP7 and VP4 gene fragments
of human RVA strains were deposited in GenBank under
the respective accession numbers ON548840–ON548887
and ON600481–ON600526.

2.4. Identification of Complete Genotypes of Porcine–Human
Reassortants and Zoonotic RVA Strains. When strains were
detected in humans of RVA with genotypes G3P[6], G4P[6],

G5P[6] and G9P[6], which are typical for zoonotic strains of
pig origin, their full genotype corresponding to other genome
segments encoding structural (VP1, VP2, VP3 and VP6) and
non-structural (NSP1, NSP2, NSP3, NSP4 and NSP5) viral
proteins was determined. Additionally, the full genotype was
also established for a G1P[8] RVA strain which was unusual
for a pig host. Amplification of individual genome fragments
such as VP1–VP4 [30], VP6 and NSP1[33], NSP2–NSP4 [35]
and NSP4 [36] was carried out using the same RT-PCR pro-
tocol as for the VP4 and VP7 fragments, changing only the
set of primers and temperature profiles to those previously
described. The nucleotide sequences of the particular genome
segments of the analysed RVA strains were deposited in the
GenBank database under the following accession numbers:
OQ989123–OQ989129 (VP1), OQ989130–OQ989136 (VP2),
OQ989137–OQ989143 (VP3), OQ989144–OQ989150 (VP6),
OQ989151–OQ989157 (NSP1), OQ989158–OQ989164 (NSP2),
OQ989165–OQ989171 (NSP3), OQ989172–OQ989178 (NSP4)
and OQ989179–OQ989185 (NSP5).

2.5. Phylogenetic Analysis. For the assessment of genetic resem-
blance between human and pig RVA strains having the same
genotype, the nucleotide sequences representing a particular
virus genotype were subjected to phylogenetic analysis sepa-
rately. When several human RVA strains exhibiting >99.8%
nucleotide sequence identity of the analysed gene fragments
were detected, only one strain representing a group of strains
of a given genotype was selected for further determination of
their phylogenetic relatedness. Additionally, selected sequences
of pig and human RVA originating from Europe, Asia and
North and South America available from GenBank were
included in the analyses. The analysed virus sequences met
the criteria of the minimum length and percentage covered
by the open reading frame for the particular gene defined
by the Rotavirus Classification Working Group (RCWG)
[37]. Sequences were grouped and aligned using the MUSCLE
alignment software (MEGA 7.0, https://www.megasoftware.
net). Subsequently they were analysed using a maximum
likelihood method with the Tamura–Nei model produced in
MEGA 7.0 [38]. The reliability assessment of the phylogenetic
tree topology (by bootstrap resampling) was performed at 1000
replicates, and the phylogenetic relationship between the analysed
sequences was considered reliable when the bootstrap value was
>70%. The similarity (mutual correspondence) of the nucleotide
sequences (sequence identity matrix (SIM)) of the VP4 gene
fragments of pig and human RVA strains detected in Poland
was determined separately for each genotype using the BioEdit
sequence alignment editor programme v. 7.2.5 (Ibis Biosciences,
https://www.mbio.ncsu.edu/bioedit/bioedit.html).

2.6. Statistical Analyses. The frequency occurrence of RVA
strains in humans was estimated by the Clopper–Pearson
method using R software [39].

3. Results

3.1. G and P Genotypes of RVA Strains Detected in Humans.
Both G and P genotypes were determined for 144 (86.7%)
out of 166 RVA strains present in human stool samples, the
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G genotype was established for 156 (94%) and P for 148
(89.2%) strains. Only one G or P genotype was identified for
16 strains. Infections in humans were caused by RVAs belong-
ing to six G and four P genotypes (Table 2), G1, G4 and P[8]

RVAs being the most frequently identified among them. Dif-
ferences were observed in the frequency of occurrence of G
and P RVA genotypes in humans between Polish provinces.
The greatest diversity of G genotypes (G1, G2, G3, G4, G8 and

TABLE 1: Pig RVAs used in the phylogenetic analyses.

Pig RVA
GenBank accession number Animal

VP7 VP4 Age (weeks) State of health Origin (province)

G1P[8]/Po/POL/1160 MK239711 MK239665 10
Healthy West Pomerania

G3P[6]/Po/POL/551 OQ968886 OQ982433 1.5

G3P[6]/Po/POL/823 MK239714 MK239668 4 Healthy Lublin

G4P[6]/Po/POL/962 MK239747 MK239701 4
Diarrhoeic Kujawy-Pomerania

G4P[6]/Po/POL/964 OQ968902 OQ982430 4

G4P[6]/Po/POL/37 OQ968888 OQ982458 4

Healthy Lublin
G4P[6]/Po/POL/53 OQ968889 OQ982431 3.5
G4P[6]/Po/POL/822 OQ968887 OQ982432 4
G4P[6]/Po/POL/825 OQ968903 OQ982434 6
G4P[6]/Po/POL/1046 OQ968890 OQ982435 4

G4P[6]/Po/POL/139 OQ968892 OQ982456 10

Healthy Mazovia
G4P[6]/Po/POL/1306 OQ968893 OQ982437 5
G4P[6]/Po/POL/1372 OQ968891 OQ982439 4
G4P[6]/Po/POL/1373 OQ968909 OQ982440 4

G4P[6]/Po/POL/1421 OQ968898 OQ982436 3 Healthy Opole

G4P[6]/Po/POL/921 OQ968904 OQ982441 4
Healthy Podkarpackie

G4P[6]/Po/POL/923 OQ968905 OQ982442 4

G4P[6]/Po/POL/920 MK239746 MK239700 4 Diarrhoeic Podkarpackie

G4P[6]/Po/POL/1185 OQ968894 OQ982443 8
Healthy Pomerania

G4P[6]/Po/POL/1194 OQ968895 OQ982444 6

G4P[6]/Po/POL/874 OQ968899 OQ982445 4 Healthy Świętokrzyskie

G4P[6]/Po/POL/616 MK239743 MK239697 4

Healthy Wielkopolska
G4P[6]/Po/POL/868 MK239745 MK239699 4
G4P[6]/Po/POL/871 OQ968897 OQ982450 6
G4P[6]/Po/POL/1224 OQ968900 OQ982451 8
G4P[6]/Po/POL/1225 OQ968907 OQ982452 8

G4P[6]/Po/POL/597 OQ968906 OQ982448 4
Diarrhoeic Wielkopolska

G4P[6]/Po/POL/870 OQ968896 OQ982449 4

G4P[6]/Po/POL/786 OQ968901 OQ982453 4
Healthy West PomeraniaG4P[6]/Po/POL/790 OQ968908 OQ982454 5

G4P[6]/Po/POL/1099 MK239748 MK239702 2

G5P[6]/Po/POL/1075 MK239725 MK239683 5
Healthy Lublin

G5P[6]/Po/POL/733 MK239722 MK239676 7

G5P[6]/Po/POL/1100 MK239727 MK239680 12 Healthy Pomerania

G5P[6]/Po/POL/449 OQ968910 OQ982446 20
Healthy WielkopolskaG5P[6]/Po/POL/450 OQ968911 OQ982447 20

G5P[6]/Po/POL/620 MK239720 MK239674 20

G5P[6]/Po/POL/857 MK239723 MK239677 4 Diarrhoeic Wielkopolska

G9P[6]/Po/POL/546 OQ968913 OQ982457 5 Healthy Kujawy-Pomerania

G9P[6]/Po/POL/38 OQ968912 OQ982455 12 Healthy Lublin

G9P[6]/Po/POL/1040 MK239736 MK239690 5 Healthy Opole

G9P[6]/Po/POL/775 MK239735 MK239689 6 Healthy Wielkopolska

G9P[6]/Po/POL/1307 OQ968914 OQ982438 5 Diarrhoeic Mazovia
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G9) among human RVA strains was found in patients in
Mazovia, Kujawy–Pomerania and Wielkopolska provinces.
In the remaining provinces, mainly virus strains with two or
three G genotypes were detected. The most abundant strains,
those of P[8] RVA, were prevalent across all provinces covered
by the study (Figure 1). Surprisingly, in Świętokrzyskie prov-
ince strains of this genotype were only found in patients hos-
pitalised due to rotavirus infection. Genotype G1P[8] RVAs
were responsible for 27.7% of cases of infection, and their
prevalence among infected persons was higher than that of
other virus strains. The other frequently identified human
RVA strains were G4P[8], G9P[8] and G2P[4] (Table 2).

3.2. The Genetic Resemblance Between Human and Pig RVA
Strains Determined on the Basis of the Phylogenetic
Analysis of VP7 and VP4 Genes

3.2.1. G1 RVA Strains. Human G1 RVA strains from Poland
showed at least 90% mutual sequence identity (Supporting
Information S1: Table 1). While the human-derived strains
had relatively high identity, the sequence similarity between
human G1 RVAs and pig G1P8/Po/POL/1160 RVA was
lower, ranging from 84.1% to 85.1%. The Polish pig RVA
strain G1P8/Po/POL/1160 formed a separate clade on the
tree from human virus strains (Figure 2a). Other human
G1 RVAs which were detected in Poland clustered together

with the group of human RVAs circulating in Europe, Asia
and North and South America. Four virus strains of human
origin (G1P8/Hu/POL/114, G1P8/Hu/POL/116, G1P8/Hu/
POL/166 and G1P8/Hu/POL/324) detected in the Lublin,
Mazovia, Pomerania and Świętokrzyskie provinces revealed
a close genetic similarity to French virus strains responsible
for infections in humans (Figure 2a).

3.2.2. G3 RVA Strains. The mutual nucleotide sequence sim-
ilarity between pig G3P6/Po/POL/551 and G3P6/Po/POL/
823 RVA strains was 92.4% (Supporting Information S2:
Table 2). In the group of human G3 RVAs detected in Poland,
nucleotide sequence resemblance from 89.7% to 100% was
observed. The G3 pig and human rotaviruses showed low
mutual sequence similarity, not exceeding 88.3%. Neverthe-
less, Polish pig G3P6/Po/POL/551 and G3P6/Po/POL/823
RVAs were related to the pig and human reassortant G3P6/
Hu/SVN/SI-MB6 and to other RVA strains circulating in pigs
and humans in Slovenia (Figure 2b).

3.2.3. G4 RVA Strains. The phylogenetic analysis of pig and
human G4 RVA strains revealed their mutual genetic resem-
blance. The G4P6/Hu/POL/188 RVA strain is a porcine–
human reassortant example having at least 98.1% nucleotide
sequence similarity of its G4 genome fragment to zoonotic pig
RVA strains circulating in Poland, but a low 84.9%−85.4%

ZP

PM

KP

WP
MZ

OP

PK

LB

SK

G1P[8] (2)
G3P[4] (1)
G3P[9] (1)
G4P[8] (1)
G9P[8] (12)
G8, G9P[X] (3)

G1P[8] (5)
G2P[4] (4)
G4P[8] (4)
G9P[8] (5)
G2, G3P[X] (2)

G2P[4] (1)
G4P[8] (15)

G4, G8P[X] (3)
GXP[8] (1)

G1P[8] (1)
G2P[4] (2)
G3P[8] (10)
G4P[8] (4)
G3, G9P[X] (2)

G2P[4] (1)
G9P[8] (2)
GXP[8] (1)

G1P[8] (18)
G4P[6] (1)
G9P[8] (1)
GXP[8] (1)

G1P[8] (2)
G2P[4] (12)
G9P[8] (3)
G2P[X] (2)

G1P[8] (12)
G4P[8] (5)

G1P[8] (6)
G2P[4] (2)
G3P[8] (2)
G3P[9] (1)
G4P[8] (5)
G9P[8] (3)
GXP[8] (1)

FIGURE 1: Human RVA strains detected in individual provinces in Poland. KP, Kujawy–Pomerania; LB,Lublin; MZ,Mazovia; OP,Opole; PK,
Podkarpackie; PM,Pomerania; SK,Świętokrzyskie; WP,Wielkopolska and ZP,West Pomerania.
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 ON548851/RVA/Human-wt/POL/330/2015/G1P8
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 ON548844/RVA/Human-wt/POL/186/2015/G1P8

 ON548858/RVA/Human-wt/POL/255/2015/G1P8

 ON548848/RVA/Human-wt/POL/302/2015/G1P8
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 ON548859/RVA/Human-wt/POL/248/2015/G1P8
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 KC223598/G1P8/Hu/FRA/ADR053-1

 HM560972/G1P8/Hu/IRL/CIT-H57

 EU033973/G1P8/Hu/IRE/R300

 DQ482715/G1P8/Hu/BGD/Dhaka16-03

 GU183204/G1P8/Hu/CAN/BMH-07-011

 HM998613/G1P8/Hu/BRA/IALR113

 HG917368/G1P8/Hu/FRA//E10585
 ON548843/RVA/Human-wt/POL/166/2015/G1P8

 ON548852/RVA/Human-wt/POL/324/2015/G1P8

 ON548845/RVA/Human-wt/POL/114/2013/G1P8

 ON548846/RVA/Human-wt/POL/116/2013/G1P8

 AB796448/G1P8/Hu/JPN/KU

 EF672574/G1P8/Hu/USA/D

 KT694944/G1P8/Hu/USA/Wa
 MK239711/RVA/Pig-wt/POL/1160/2015/G1P8

 LC081151/G1P7/Po/JPN/Kyusyu-14
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 ON548864/RVA/Human-wt/POL/203/2015/G3P8

 ON548865/RVA/Human-wt/POL/227/2015/G3P8

 ON548863/RVA/Human-wt/POL/193/2015/G3P8

 ON548862/RVA/Human-wt/POL/159/2015/G3P8

 ON548866/RVA/Human-wt/POL/366/2015/G3P8

 DQ904505/G3P8/Hu/RUS/Rus-47

 JF491089/G3P8/Hu/USA/VU08-09-26

 JQ358764/G3P10/Hu/IND/mcs60

 AB792641/G3P9/Hu/JPN/AU-1

 AY456382/G3P14/Hu/BEL/B4106

 AJ540228/G3P8/Hu/USA/P

 GU296430/G3P9/Hu/ITA/PAH136

 ON548860/RVA/Human-wt/POL/88/2013/G3P9

 ON548861/RVA/Human-wt/POL/140/2013/G3P9

 MK239714/RVA/Pig-wt/POL/823/2015/G3P6

 EU383000/G3P6/Hu/SVN/SI-MB6

 OQ968886/RVA/Pig-wt/POL/551/2015/G3P6

 EU348715/G3P6/Po/SVN/P50

99

56
95

100

100 99

26

99

97

88

86

100

0.02

ðbÞ
FIGURE 2: Continued.
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 ON548872/RVA/Human-wt/POL/335/2015/G4P8
 ON548873/RVA/Human-wt/POL/337/2015/G4P8
 ON548875/RVA/Human-wt/POL/345/2015/G4P8
 ON548874/RVA/Human-wt/POL/343/2015/G4P8
 ON548877/RVA/Human-wt/POL/355/2015/G4P8
 ON548876/RVA/Human-wt/POL/347/2015/G4P8

 ON548868/RVA/Human-wt/POL/162/2015/G4P8
 ON548870/RVA/Human-wt/POL/315/2015/G4P8
 ON548871/RVA/Human-wt/POL/316/2015/G4P8

 KC841471/G4P8/Hu/GRC/Ath113
 ON548867/RVA/Human-wt/POL/31/2013/G4P8

 GU979200/G4P8/Hu/DEU/GER124-09
 JN849138/G4P8/Hu/BEL/BE1129

 AB039035/G4P8/Hu/JPN/Hochi
 HM773950/G4P8/Hu/USA/Bethesda
 EF672616/G4P6/Hu/GBR/ST3

 OQ968906/RVA/Pig-wt/POL/597/2013/G4P6
 OQ968899/RVA/Pig-wt/POL/874/2014/G4P6

 XO6759/G4P6/Po/USA/Gottfried
 MK239743/RVA/Pig-wt/POL/616/2014/G4P6
 OQ968894/RVA/Pig-wt/POL/1185/2015/G4P6
 OQ968887/RVA/Pig-wt/POL/822/2014/G4P6

 OQ968891/RVA/Pig-wt/POL/1372/2015/G4P6
 OQ968909/RVA/Pig-wt/POL/1373/2015/G4P6
 OQ968890/RVA/Pig-wt/POL/1046/2015/G4P6

 MK239745/RVA/Pig-wt/POL/868/2014/G4P6
 ON548869/RVA/Human-wt/POL/188/2015/G4P6
 OQ968896/RVA/Pig-wt/POL/870/2014/G4P6
 OQ968897/RVA/Pig-wt/POL/871/2014/G4P6

 OQ968893/RVA/Pig-wt/POL/1306/2015/G4P6
 KT727258/G4P6/Po/THA/CMP77

 JX102476/G4P6/Po/THA/CMP070
 MK239747/RVA/Pig-wt/POL/962/2014/G4P6
 MK239746RVA/Pig-wt/POL/920/2014/G4P6
 OQ968904/RVA/Pig-wt/POL/921/2014/G4P6
 OQ968903/RVA/Pig-wt/POL/825/2014/G4P6
 OQ968905/RVA/Pig-wt/POL/923/2014/G4P6

 OQ968901/RVA/Pig-wt/POL/786/2014/G4P6
 OQ968888/RVA/Pig-wt/POL/37/2013/G4P6

 OQ968892/RVA/Pig-wt/POL/139/2011/G4P6
 OQ968908/RVA/Pig-wt/POL/790/2014/G4P6
 OQ968898/RVA/Pig-wt/POL/1421/2014/G4P6
 OQ968895/RVA/Pig-wt/POL/1194/2015/G4P6

 OQ968889RVA/Pig-wt/POL/53/2013/G4P6
 OQ968902/RVA/Pig-wt/POL/964/2014/G4P6

 MK239748/RVA/Pig-wt/POL/1099/2015/G4P6
 OQ968900/RVA/Pig-wt/POL/1224/2015/G4P6
 OQ968907/RVA/Pig-wt/POL/1225/2015/G4P6
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 ON548879/RVA/Human-wt/POL/95/2013/G9P8

 ON548880/RVA/Human-wt/POL/150/2013/G9P8
 ON548878/RVA/Human-wt/POL/82/2013/G9P8
 ON548886/RVA/Human-wt/POL/849/2013/G9P8

 ON548882/RVA/Human-wt/POL/219/2015/G9P8
 ON548883/RVA/Human-wt/POL/180/2015/G9P8

 ON548881/RVA/Human-wt/POL/38/2013/G9P8
 ON548884/RVA/Human-wt/POL/104/2013/G9P8

 JN849131/G9P6/Hu/BEL/BE1248
 ON548885/RVA/Human-wt/POL/109/2013/G9P8

 OQ968914/RVA/Pig-wt/POL/1307/2015/G9P6
 OQ968913/RVA/Pig-wt/POL/546/2015/G9P6

 OQ968912/RVA/Pig-wt/POL/38/2013/G9P6
 MK239735/RVA/Pig-wt/POL/775/2014/G9P6
 MK239736/RVA/Pig-wt/POL/1040/2015/G9P6

 JX102482/G9P6/Po/CAN/CE-M-05-0067
 AB180969/G9P8/Hu/USA/WI61

100
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99
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FIGURE 2: The phylogenetic relationship of G1 (a), G3 (b), G4 (c) and G9 (d) RVA strains circulating in the human and pig populations in
Poland and worldwide. The scale bar corresponds to 0.01–0.05 substitutions/nucleotide. The positions on the trees of pig and human RVA
strains detected in Poland are marked with a triangle and circle symbol, respectively.
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sequence identity with other human G4 RVA strains from
Poland (Supporting Information S3: Table 3). The layout of
the tree’s branches indicates the zoonotic nature of G4P6/Po/
POL/868 and G4P6/Po/POL/1046 RVAs, which formed a
common cluster with animal rotaviruses (Figure 2c). In addi-
tion, three other genetically related pig strains (G4P6/Po/POL/
37, G4P6/Po/POL/786 and G4P6/Po/HRV/S400-Vs) could
be considered potentially zoonotic, as they were in the same
clade as porcine–human reassortant RVA (G4P6/Hu/HUN/
BP1227) which caused infections in humans in Hungary.
However, on the separate branch but still phylogenetically
related was present other porcine–human reassortant strain
from Italy which only reviled 83.4% sequence similarity to
these pig RVAs.

3.2.4. G9 RVA Strains. Only one RVA strain of human origin
(G9P8/Hu/POL/109) was characterised by notable sequence
identity with pig RVAs of the same genotype (Supporting
Information S4: Table 4), despite forming a separate branch
on the phylogenetic tree (Figure 2d).

3.2.5. P[6] RVA Strains. The P[6] RVA strains present in the
domestic population of pigs revealed higher diversity of the
nucleotide sequences of the VP4 gene fragment than that of
all other G and P genotypes of pig RVAs. In the studied
human population, only one strain of P[6] genotype (G4P6/
Hu/POL/188) showed 100% phylogenetic identity with a pig
P[6] strain (G5P6/Po/POL/1075 RVA) and confirmed its zoo-
notic nature. On the other hand, a lower 93%–93.3% genetic
resemblance was observed between human G4P6/Hu/ITA/
PZ3 zoonotic strain and pig P[6] strains from Poland, which
formed a separate clade from other pig P[6] RVAs (Support-
ing Information S5: Table 5; Figure 3a).

3.2.6. P[8] RVA Strains. The P[8] virus genotype was most
often identified among RVA strains circulating in humans
rather than in pigs in Poland. The mutual identity of the
nucleotide sequences of pig and human P[8] RVA was above
92% (Supporting Information S6: Table 6). The G1P8/Po/
POL/1160 RVA strain detected in pigs in Poland showed
99.4%–99.5% genetic resemblance to G1P8/Hu/POL/160
and G1P8/Hu/POL/193 RVAs which caused infections in
humans in Mazovia province. The topology of the phyloge-
netic tree also confirms the common evolutionary origin of
pig and human P[8] RVAs by placing pig and human virus
strains G1P8/Po/POL/1160, G1P8/Hu/POL/160 and G1P8/
Hu/POL/193 from Poland as well as Croatian G1P8/Po/
HRV/S372-VS in a commonmonophyletic group (Figure 3b).
Similar phylogenetic relationships were also observed between
G1P8/Po/HRV/S441-OB and G9P[8] human strains.

3.3. Amino Acid Sequence Analysis of the Structural VP4
Protein of Pig and Human RVA Strains Detected in Poland.
The amino acid sequence variability for pig and human P[6]
virus strains ranged from 10.7% to 14.6%. Subsequent com-
parative sequence analysis of zoonotic P[6] virus strains
(G4P6/Po/POL/1046 and G5P6/Po/POL/1075) and a repre-
sentative sequence of G4P6/Po/POL/870 for the entire group
of pig P[6] RVAs reviled the presence of 48 amino acid sub-
stitutions (Supporting Information S7: Table 7). Common

substitutions for zoonotic virus strains were present at posi-
tions: 64(I/V), 94 and 95 (I/V), 115 (T/V), 129 (R/K), 133
(I/V), 151 (G/N), 198 (D/N), 203 (V/I) and 229 (I/M). Like-
wise, in the amino acid sequence of zoonotic G4P6/Hu/POL/
188 detected in humans, the variable amino acids sites char-
acteristic for both pig G4P6 and zoonotic pig RVAs were
identified at positions 47 (S), 64, 94 and 95 (V), 116 (T),
129 (K), 133 (V), 139 (K), 151 (S), 185 (H), 206 (E), 219
(N), 229(M) and 92 (K), 93 (G), 109 (I), 114(H), 119(D),
129(K), 136(S), 138(D), 153(D) and 245(I), respectively.

By comparing the amino acid sequences of the VP4 pro-
tein for G1P8/Po/POL/1160 porcine–human reassortant with
other P[8] RVAs circulating in humans in Poland, 21 major
amino acid substitutions were observed at the following posi-
tions: 30 (T/I), 31 (Q/K), 60 and 72 (T/A), 73 (A/T), 78 (T/S),
85 (T/N), 104 (A/V), 113 (N/D), 130 (V/I), 144 (K/R), 149
(N/S), 162 (R/K), 173 (V/I), 187 (S/G), 194 (D/N), 195 (G/D),
230 (R/I), 234 (P/A), 245 (K/T) and 248 (Q/E) (Supporting
Information S8: Table 8). In the group of human P[8] strains
there was G1P8/Hu/POL/160 RVA strain which did not reveal
any changes in the amino acid sequence within the analysed
genome fragment compared to porcine–human G1P8/Po/
POL/1160 reassortant strain. In contrast, another human
RVA (G1P8/Hu/POL/193) showed only one amino acid
substitution at position 162 (V/I).

3.4. Molecular Characteristics and Geographical Occurrence
of Porcine–Human Reassortants and Zoonotic RVA Strains.
Except for the fifth segment of the genome, the segments
encoding structural (VP1–VP3 and VP6) and non-structural
(NSP1–NSP5) proteins of zoonotic (G4P6/Po/POL/868 and
G5P6/Po/POL/1075) strains and the porcine–human reas-
sortant (G4P6/Hu/POL/188) strain had the same genotype
pattern. In the case of other human strains, that is, G1P8/Hu/
POL/160 and G1P8/Hu/POL/193, as well as the porcine–human
reassortant G1P8/Po/POL/1160, the same genotypes were
established for 10 viral RNA segments, only the sixth segment
being different. A genetic reassortment event between pig and
human RVA was also observed for the G1P8/Po/POL/1160
and G5P6/Po/POL/1075 strains (Table 3). The presence of
identical genotypes for 10 out of 11 virus genome segments
in pig and human RVAs indicated that G4P6/Po/POL/868
and G4P6/Po/POL/1046 RVAs were zoonotic virus strains
(Table 3). Interestingly, a G4P[6] RVA strain was identified
in humans, although virus strains of this genotype were highly
prevalent in pigs in Poland (Table 4). This strain was also
detected in pigs kept in the same region (a district in Podkar-
packie province) in which a person lived, who suffered from
rotavirus diarrhoea caused by a virus strain of the same
genotype.

4. Discussion

Farm animals can be a source of zoonotic rotavirus strains
playing an important role in the epidemiology of rotavirus
infections in humans [20, 21]. Phylogenetic analyses of the
nucleotide sequences of the gene fragments encoding the
VP4 and VP7 proteins of the virus capsid enabled assessment
of the strain relatedness and genome sequence divergence
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 OQ982433/RVA/Pig-wt/POL/551/2015/G3P6
 OQ982434/RVA/Pig-wt/POL/825/2014/G4P6
 OQ982432/RVA/Pig-wt/POL/822/2014/G4P6
 MK239668/RVA/Pig-wt/POL/823/2015/G3P6

 OQ982445/RVA/Pig-wt/POL/874/2014/G4P6
 MK239690/RVA/Pig-wt/POL/1040/2015/G9P6

 MK239700/RVA/Pig-wt/POL/920/2015/G4P6
 OQ982441/RVA/Pig-wt/POL/921/2014/G4P6
 OQ982442/RVA/Pig-wt/POL/923/2014/G4P6

 OQ982444/RVA/Pig-wt/POL/1194/2015/G4P6
 OQ982449/RVA/Pig-wt/POL/870/2014/G4P6
 MK239699/RVA/Pig-wt/POL/868/2015/G4P6
 OQ982450/RVA/Pig-wt/POL/871/2014/G4P6

 AM992567/G4P6/Hu/HUN/BP1125
 AM992574/G4P6/Hu/HUN/BP1547

 EU348718/G5P6/Po/SVN/P83
 OQ982435/RVA/Pig-wt/POL/1046/2015/G4P6

 OQ982431/RVA/Pig-wt/POL/53/2013/G4P6
 OQ982455/RVA/Pig-wt/POL/38/2013/G9P6

 OQ982439/RVA/Pig-wt/POL/1372/2015/G4P6
 OQ982440/RVA/Pig-wt/POL/1373/2015/G4P6
 MK239674/RVA/Pig-wt/POL/620/2013/G5P6

 OQ982448/RVA/Pig-wt/POL/597/2013/G4P6
 HQ388409/G5P6/Po/GBR/X1

 JQ255033/G4P6/Po/GBR/F
 AB701783/G4P6/Po/BRA/BRA844-07

 KJ135217/G4P6/Po/GBR/VLAB
 EF672612/G4P6/Hu/GBR/ST3

 OQ982456/RVA/Pig-wt/POL/139/2011/G4P6
 OQ982446/RVA/Pig-wt/POL/449/2015/G5P6
 OQ982447/RVA/Pig-wt/POL/450/2015/G5P6

 OQ982438/RVA/Pig-wt/POL/1307/2015/G9P6
 OQ982437/RVA/Pig-wt/POL/1306/2015/G4P6

 OQ982451/RVA/Pig-wt/POL/1224/2015/G4P6
 OQ982452/RVA/Pig-wt/POL/1225/2015/G4P6

 MK239677/RVA/Pig-wt/POL/857/2014/G5P6
 OQ982457/RVA/Pig-wt/POL/546/2015/G9P6
 OQ982453/RVA/Pig-wt/POL/786/2014/G4P6
 OQ982454/RVA/Pig-wt/POL/790/2014/G4P6

 MK239701/RVA/Pig-wt/POL/962/2015/G4P6
 OQ982430/RVA/Pig-wt/POL/964/2014/G4P6

 MK239702/RVA/Pig-wt/POL/1099/2015/G4P6
 MK239689/RVA/Pig-wt/POL/775/2014/G9P6
 OQ982443/RVA/Pig-wt/POL/1185/2015/G4P6
 MK239676/RVA/Pig-wt/POL/733/2014/G5P6

 AB701783/G4P6/Po/JPN/pig6-7d
 MK239683/RVA/Pig-wt/POL/1075/2015/G5P6

 ON600526/RVA/Human-wt/POL/188/2015/G4P6
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FIGURE 3: Continued.
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 ON600514/RVA/Human-wt/POL/305/2015/G1P8

 ON600515/RVA/Human-wt/POL/308/2015/G1P8

 ON600510/RVA/Human-wt/POL/330/2015/G1P8

 ON600484/RVA/Human-wt/POL/274/2015/G1P8

 ON600483/RVA/Human-wt/POL/262/2015/G1P8

 ON600517/RVA/Human-wt/POL/257/2015/G1P8

 ON600520/RVA/Human-wt/POL/255/2015/G1P8

 ON600489/RVA/Human-wt/POL/254/2015/G1P8

 ON600498/RVA/Human-wt/POL/176/2013/G1P8

 ON600485/RVA/Human-wt/POL/370/2015/G1P8

 ON600493/RVA/Human-wt/POL/260/2015/G1P8

 ON600495/RVA/Human-wt/POL/166/2015/G1P8

 ON600509/RVA/Human-wt/POL/324/2015/G1P8

 ON600503/RVA/Human-wt/POL/114/2013/G1P8

 ON600507/RVA/Human-wt/POL/316/2015/G4P8

 ON600518/RVA/Human-wt/POL/335/2015/G4P8

 ON600523/RVA/Human-wt/POL/345/2015/G4P8

 KP645336/G1P8/Hu/AUS/CK00110

 OL449710/G1P8/Hu/IND/mani-375

 KR827524/G1P8/Hu/RUS/NN725-14

 ON600502/RVA/Human-wt/POL/109/2013/G9P8

 ON600508/RVA/Human-wt/POL/248/2015/G1P8

 ON600513/RVA/Human-wt/POL/302/2015/G1P8

 ON600490/RVA/Human-wt/POL/121/2013/G1P8

 KJ135220/G5P8/Po/GBR/V2

 ON600499/RVA/Human-wt/POL/180/2015/G9P8

 ON600496/RVA/Human-wt/POL/193/2015/G3P8

 MK239665/RVA/Pig-wt/POL/1160/2015/G1P8

 ON600494/RVA/Human-wt/POL/160/2013/G1P8

 KF614652/G4P8/Hu/ITA/PR1602

 ON600486/RVA/Human-wt/POL/31/2013/G4P8

 KJ432862/G9P8/Hu/SVN/SI-744

 ON600487/RVA/Human-wt/POL/38/2013/G9P8

 ON600501/RVA/Human-wt/POL/104/2013/G9P8

 KJ919703 /G1P8/Hu/HUN/ERN5611

 ON600481/RVA/Human-wt/POL/82/2013/G9P8

 ON600497/RVA/Human-wt/POL/133/2013/G9P8

 MT025868/G1P8/Hu/USA/Wa

 HG917369/G1P8/Hu/FRA/E10585

 JN849155/G1P8/Hu/BEL/BE1141
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FIGURE 3: The phylogenetic relationship of P[6] (a) and P[8] (b) RVA strains circulating in the human and pig populations in Poland and
worldwide. The scale bar corresponds to 0.02–0.05 substitutions/nucleotide. The positions on the trees of pig and human RVA strains
detected in Poland are marked with a triangle and circle symbol, respectively.
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resulting from mutations and reassortments of the virus
genes [26]. Currently, 42 G and 58 P RVA genotypes have
been identified in humans and animals [40]. In this study,
RVA strains with G1–G4, G8 and G9 and P[4], P[6], P[8]
and P[9] genotype assignments were detected in humans.

Among them G1–G4, P[4], P[6] and P[9] have previously
been identified in Poland in cases of rotavirus diarrhoea in
children [29]. Of note is that virus strains with all of these
same genotypes except P[9] have also been detected in pigs in
Poland [34]. They have most commonly been found in

TABLE 3: The complete genotype pattern of zoonotic, porcine–human reassortant and selected human RVA strains.

RVA Host
Genome segment/Protein coded by gene

4/VP7 9/VP4 6/VP6 1/VP1 2/VP2 3/VP3 5/NSP1 8/NSP2 7/NSP3 10/NSP4 11/NSP5

G4P6/Hu/POL/188 Human G4 P[6] I1 R1 C1 M1 A1 N1 T1 E1 H1

G4P6/Po/POL/1046 Pig G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

G4P6/Po/POL/868
Pig

G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1
G5P6/Po/POL/1075 G5 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

G1P8/Hu/POL/160
Human

G1 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1
G1P8/Hu/POL/193 G1 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

G1P8/Po/POL/1160 Pig G1 P[8] I5 R1 C1 M1 A1 N1 T1 E1 H1

TABLE 4: RVA strains found in pigs and humans in individual Polish provinces.

RVA
Province

Pig Human

G4P[6] (n= 2)
G9P[6] (n= 1)

G1P[8] (n= 2)
G3P[4] (n= 1)
G3P[9] (n= 1)
G4P[8] (n= 1)
G9P[8] (n= 12)

Kujawy–Pomerania

G3P[6] (n= 1)
G4P[6] (n= 1)∗

G4P[6] (n= 3)
G5P[6] (n= 2)∗

G9P[6] (n= 1)

G1P[8] (n= 5)
G2P[4] (n= 4)
G4P[8] (n= 4)
G9P[8] (n= 5)

Lublin

G4P[6] (n= 4)
G9P[6] (n= 1)

G1P[8] (n= 1)
G2P[4] (n= 2)
G3P[8] (n= 10)
G4P[8] (n= 4)

Mazovia

G4P[6] (n= 1)
G9P[6] (n= 1)

G2P[4] (n= 1)
G9P[8] (n= 2)

Opole

G4P[6] (n= 3)
G1P[8] (n= 18)
G4P[6] (n= 1)∗

G9P[8] (n= 1)
Podkarpackie

G4P[6] (n= 2)
G5P[6] (n= 1)

G1P[8] (n= 2)
G2P[4] (n= 12)
G9P[8] (n= 3)

Pomerania

G4P[6] (n= 1)
G1P[8] (n= 12)
G4P[8] (n= 5)

Świętokrzyskie

G4P[6] (n= 1)∗

G4P[6] (n= 6)
G5P[6] (n= 4)
G9P[6] (n= 1)

G1P[8] (n= 6)
G2P[4] (n= 2)
G3P[8] (n= 2)
G3P[9] (n= 1)
G4P[8] (n= 5)
G9P[8] (n= 3)

Wielkopolska

G1P[8] (n= 1)∗∗

G3P[6] (n= 1)
G4P[6] (n= 3)

G2P[4] (n= 1)
G4P[8] (n= 15)

West Pomerania

∗Zoonotic pig RVA strains.
∗∗Porcine–human reassortant RVA strains.
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humans worldwide [2, 41, 42], although G8 and P[9] RVAs
have only sporadically been identified in human patients
[2, 41, 42]. In this study, there were no significant differences
observed in the frequency occurrence among the identified
G genotypes of human RVA strains, although G1 RVAs did
constitute the most numerous group of strains. Generally in
Europe, human infections are mainly caused by G1 RVAs
[41, 43–45], while G8 strains have sporadically been detected
in animals besides humans [41, 43, 45]. It has been noted that
some human G8 RVAs are bovine–human reassortant strains
[36, 46]. In Poland, as in other European countries, only single
cases of human G8 RVA infections have been detected so far
[41, 43, 45]. Four out of the 37 P genotypes identified among
human RVAs over the entire world were also found in Poland.
Strains of the P[8] genotype dominated, as they were recog-
nised in 76.3% of cases of rotavirus infection. Paralleling the
high P[8] RVA prevalence in Poland, strains of this genotype
were also frequently noted among human patients in Europe
[1, 41, 43–45]. In the group of human RVA strains detected in
Poland, there were G4P[6] reassortants containing VP4 and
VP7 gene fragments derived from pig RVAs. Strains of this
genotype are the most frequently detected zoonotic RVA
strains in humans [16–20, 22, 25, 26, 47–54]. Another RVA
strain of zoonotic importance besides G4P[6] found in pigs in
Poland was G9P[6] RVA. However, it was not detected in
humans in this study, although virus strains of the same geno-
type have been frequently identified in human patients in
the United Kingdom, Belgium, the United States of America,
Pakistan and India [41, 55–57]. It has been suggested that the
presence of RVAs with the same genotype in different hosts,
for example, G4P[6], G9P[6] and G9P[8], could indicate
strain reassortment events [19–22, 26, 51, 54, 56]. Of note is
that zoonotic RVA strains of pig origin are of the P[6] geno-
type [58, 59]. The ability of pig RVAs to cross the species
barrier is mostly associated with the structure of the VP4
protein having binding affinity to sialic acid receptors present
in pig intestinal epithelial cells but also present on the surface
of human respiratory and urogenital tract cells [58, 60, 61].
However, the incomplete compatibility between the antigenic
determinants of P[6] RVA strains and the receptors on human
cells prevents the spread of animal virus strains in a human
host being rapid [58, 59]. Polish RVA strains affiliated to
the G1 and G3 genotypes which could infect both pigs and
humans formed phylogenetically closely related clusters which
were different to the clades encompassing strains of the same
genotypes which were specific to a particular host. However, in
the population of pig G3 RVAs there was the G3P6/Po/POL/
551 strain showing closer genetic similarity to a Slovenian
porcine–human G3 reassortant RVA than to other pig G3
RVA strains [25]. This genetic resemblance could have indi-
cated that in the group of Polish pig G3 RVAs, there are strains
which may be considered potentially zoonotic. In general, the
zoonotic nature of pig G3 strains has previously been con-
firmed by cases of human infection in Italy, China and Brazil
[24, 51, 62]. The presence of potentially zoonotic strains was
also found in the group of pig G9 RVA strains. One, G9P6/Po/
POL/775 pig RVA, was in a common phylogenetic cluster with
human RVAs. It also showed a closer genetic relationship to

human than to pig G9 RVA strains. Another piece of evidence
for pigs as a source of infectious rotaviruses for humans in
Poland was the detection of G9P8/Hu/POL/109 RVA, having
at least 93.4% nucleotide sequence identity of its VP4 genome
segment with those of pig G9P[6] RVAs. Nevertheless, pig and
human G9 RVA strains showed low genetic variability regard-
less of their host, and these results are consistent with previous
observations [2]. The evolutionary relationship between pig
and human G9 RVA has also been confirmed by other studies
showing that human strains of this genotype are most likely
pig RVAs adapted to the human host [2, 63, 64]. During this
present assessment of the genetic relationship between pig and
human G4 RVAs originating from Poland, it was shown that
they belonged to phylogenetically separate groups. However,
in both pig and human hosts, there were not only strains having
high mutual genetic resemblance but also zoonotic strains. The
analysis of the whole virus genome of zoonotic pig G4P6/Po/
POL/868, G4P6/Po/POL/1046 and G5P6/Po/POL/1075 as well
as human G4P6/Hu/POL/188 RVA detected in this study
revealed that the human strain is a porcine–human reassor-
tant virus. High genetic similarity of the VP7 genome segment
at 98.9%was found between human G4P6/Hu/POL/188 RVA
and pig G4P6/Po/POL/868. Additionally, the human strain
also shared 97.9% nucleotide sequence identity within the
same genome segment with pig G4P6/Po/POL/1046 RVA.
BothG4P6/Po/POL/868 andG4P6/Po/POL/1046 RVA strains
shared the same genotype pattern for particular genome seg-
ments, with the exception of the NSP1 protein gene. Further-
more, G4P6/Hu/POL/188 RVA showed a closer genetic
resemblance to pig strains than to other human G4 RVA,
with which it displayed less than 85.4% similarity. The phy-
logenetic analysis of the virus VP4 gene also confirmed the
common evolutionary origin of pig P[6] and human G4P6/
Hu/POL/188 RVA. As with nucleotide sequence analysis also,
the presence of variable amino acids sites characteristic for pig
and zoonotic pig P[6] RVAs confirms this finding. The trans-
mission of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 RVA
from pigs to humans has previously been reported [20, 23].
Similarly, the VP4 gene of pig G5P6/Po/POL/1075 detected
in this study revealed a 100% phylogenetic relationship with
human G4P6/Hu/POL/188 RVA. It has to be emphasised that
G5P[6] RVA strains had not been detected in humans in
Poland before this. Neither has more than a single case of
human infection caused by RVA of this genotype been reported
in Europe [65]. It has been suggested that infections in humans
caused by G5P[6] RVAs resulted from direct virus transmission
from pigs [65–68]. It is significant that the I1 genotype of G5P6/
Po/POL/1075 has been identified in zoonotic pig RVA strains
[17, 19, 51]. Evidence of the reassortment events between pig
and human RVAs is the emergence of zoonotic G4P6/Hu/POL/
188 RVA, the sixth segment (the I1 genotype) of the genome of
which originates from pig virus strains [59]. Strains of I1 geno-
type have also been found in porcine–human virus reassortants
causing infections in humans [17, 19, 51]. The identification of
this genotype in the population of human RVA strains (G4P6/
Hu/POL/188, G1P8/Hu/POL/160 and G1P8/Hu/POL/193) in
Poland also indicates the ongoing reassortment events. It is
salient that the presence of RVA of the I1 genotype in pigs

12 Transboundary and Emerging Diseases
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has only been reported in Belgium so far [59]. However, G4P[6]
RVA strains having the same genotype composition determined
for all genome segments as zoonotic pig G4P6/Po/POL/868
RVA strains from Poland have been detected in humans in
Croatia, Argentina, Paraguay andChina [17, 19, 23, 51].What
is more, infections in humans caused by porcine–human G4P
[6] RVA reassortants have been widely reported [16–19, 22,
25, 26, 48–51, 53, 54]. A further example of a gene reassort-
ment event between pig and human RVAs is the assignment
of the NSP-1 gene of pig G1P8/Po/POL/1160 RVA to the
A1 genotype, which is a typical genotype for human RVAs.
Strains of the G1P[8] genotype are often detected in humans
worldwide, including in Poland, while in pigs they occur only
sporadically [41, 69, 70]. In fact, all genotypes of particular
genome segments of pig G1P8/Po/POL/1160 RVA, except
genotype I5 (segment 6/VP6) are typical for human RVA
strains. Likewise, the analysis of VP4 amino acid sequence
of porcine–human reasortant G1P8/Po/POL/1160 provides
further molecular evidence for its adaptive evolution to pigs.
Surprisingly, this analysis revealed the entire concordance of
the amino acid profiles between human G1P8/Hu/POL/160
and porcine–human reasortant strain G1P8/Po/POL/1160. In
the case of G1P8/Hu/POL/193, only a single amino acid sub-
stitution was observed.

Currently, there is no scientific data available on vaccine
effectiveness in preventing RVA infections in humans and
pigs caused by virus strains holding new genotypes. There-
fore, it seems to be advisable to carry out a continuous
epidemiological surveillance of infections combined with
identification of the virus genotypes. It will allow to assess
a real impact of the vaccines used on the appearance and
variability of the genetic profile of circulating RVA strains.
In contrast to humans, rotavirus vaccines are not consid-
ered in immunoprophylaxis programmes of pig herds in
Poland, although they are available on the European market.
RVAs are ubiquitous microorganisms, therefore efficient pro-
tection of pigs against infection is not possible. Usually, RVA
infections are characterised by diarrhoea which tends to be
severe, especially when Escherichia coli co-infections appear.
In fact, vaccination may not always provide sufficient pro-
tection against RVA infection due to differences observed
between the antigenic composition of the virus strains pres-
ent in the vaccine and the low degree of cross-reactivity of
generated antibodies towards the antigenic determinants of
the virus strains circulating in the immunised animal pop-
ulation. In Polish pig herds where rotavirus infections have
particularly severe course, the use of autovaccines is recom-
mended [71].

A major limitation of this study may be the small number
of tested human stool samples and identified virus strains,
which may not fully reflect the genotype pattern of the cir-
culating RVAs in humans in Poland. It could also have
affected the results of the phylogenetic analyses and the rela-
tionships observed between human and pig viruses. Never-
theless, the identified examples still shed light on the evolution
and genetic variability of RVAs circulating in human and pig
hosts in Poland, providing evidence for their previous genetic
reassortment and zoonotic transmission.

5. Conclusions

This study showed the genetic diversity among RVAs circu-
lating in humans in Poland. It also provided evidence of the
formation of novel and antigenically different virus strains
able to cross the species barrier. As zoonotic virus strains
emerge, the mechanisms which lead to this can be better
recognised and understood by tracking the virus’ evolution.
The occurrence of G4P[6] and G1P[8] RVA in pigs in Poland
confirms the role of this animal species as a reservoir of zoo-
notic RVAs. The findings of this study could refine epidemi-
ological risk assessment related to human infections caused by
animal RVAs and predict the suitability of vaccines used in
future public health immunisation programmes.
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