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Abstract: We have characterized the intrahost genetic variation in the bovine leukemia virus (BLV) by
examining 16 BLV isolates originating from the Western Siberia–Tyumen and South Ural–Chelyabinsk
regions of Russia. Our research focused on determining the genetic composition of an 804 bp fragment
of the BLV env gene, encoding for the entire gp51 protein. The results provide the first indication
of the quasi-species genetic nature of BLV infection and its relevance for genome-level variation.
Furthermore, this is the first phylogenetic evidence for the existence of a dual infection with BLV
strains belonging to different genotypes within the same host: G4 and G7. We identified eight cases
of recombination between these two BLV genotypes. The detection of quasi-species with cases of
dual infection and recombination indicated a higher potential of BLV for genetic variability at the
intra-host level than was previously considered.

Keywords: BLV; Deltaretrovirus; dual infection; recombination; quasi-species

1. Introduction

Point mutations and recombination are two of the most important sources of genetic
variation. Both mechanisms are prevalent among members of the Retroviridae family;
point mutations act as the source of novel variants, which are then combined into novel
haplotypes through recombination. The quasi-species concept, which is defined as the
population of viruses that inhabit a single host, explicitly considers these mechanisms
and can be applied to retroviruses [1]. When dual infection of one host by relatively
different viral strains occurs, complex patterns of sequence diversity can appear [2]. The
best example comes from viruses such as Human Immunodeficiency Virus-1 (HIV-1), a
member of the genus Lentivirus in the Retroviridae family, which has an extremely high
population diversity due to the high error rate of reverse transcriptase and long periods of
infection [3].

In contrast to most other genera in Retroviridae, viruses in the genus Deltaretrovirus,
which includes human and simian T-lymphotropic viruses (HTLV and STLV), are char-
acterized by relatively low levels of genetic diversity. However, the quasi-species nature
of some HTLV-1 infections and relatively high levels of variability of HTLV-1 sequences
within a single viral strain have been reported [4,5]. Furthermore, co-infection with two
different types of HTLV or STLV and recombination between different subtypes of HTLV-1
have been identified as well [6–8].
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In contrast to HTLV and STLV, the occurrence of the quasi-species type of infection and
natural recombination in the bovine leukemia virus (BLV) has never been documented. The
BLV is the causal agent of enzootic bovine leukosis (EBL) and is also a member of Deltaretro-
virus. Most of the infected cattle remain clinically asymptomatic although one-third of them
develop persistent lymphocytosis which is characterized by the polyclonal expansion of in-
fected B-lymphocytes, and a small percentage of the latter develop leukemia/lymphoma [9].
BLV is distributed worldwide and there are several regions where infections are highly
prevalent, such as Argentina, USA, and Japan [10–13]. Based on phylogenetic studies of
BLV isolates from all over the world, the BLV strains are currently classified into 12 different
genotypes which largely reflect their geographical distribution [14,15]. In a previous study
we reported that the most common BLV strains from Eastern Europe and Siberia belong to
genotypes G4, G7 and the newly identified genotype G8 [15]. This study also revealed that
in most regions of Russia genotypes G4 and G7 might circulate in animals from the same
area and env gene sequences from some of these animals showed the existence of multiple
polymorphic sites. This suggests the presence of a heterogeneous virus population within
one host, as was pointed out for HTLV-1 and STLV-1 4. The previous research was based
on analyses of a 444 bp fragment of the env gene. In the current study, we estimate the
levels of nucleotide diversity in the portion of the env gene encoding for the whole gp51
glycoprotein of env gene from cattle infected with BLV from Russia. We demonstrated
that a quasi-species type of infection, dual infection with the genotypes G4 and G7, and a
recombination were presented under natural infection.

2. Materials and Methods

Blood samples were collected from 16 cattle that had tested positive for BLV as indi-
cated by an agar gel immunodiffusion test (AGID). Eight of the samples (designated as
1S, 2S, 3S, 4S, 5S, 4T, 5T, 6T) came from the Tyumen region, in Western Siberia, and eight
(designated as 1C, 7C, 8C, 9C, 10C, 2Z, 4Z, 5Z) originated from the Chelyabinsk region, in
South Ural, both in Russia (Figure 1).
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Tyumen (Koktiul) and Chelyabinsk (Koelga) regions of the West Siberian Plain (the Russian Federation).

Genomic DNA was isolated from peripheral blood leukocytes (PBLs) (DNeasy Tissue
Kit, Qiagen). The amplicons of env–gp51 (804 bp) were obtained through a two-step PCR us-
ing primer pairs P4796, P5791 and P4833, P5734 for the first and second round, respectively,
under the following conditions: 95 ◦C 3 min, 95 ◦C 30 s, 62 ◦C 30 s (external primers) or
66 ◦C 30 s (internal primers), 72 ◦C 2 min for 35 cycles, and final extension for 10 min 72 ◦C.
The pairs of primers used in this study are shown in Supplementary Table S1 and Figure S1.
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The reaction consisted of 500 ng of template DNA, 1 × optimized DyNAzyme buffer,
200 µM each dNTPs, 0.5 µM each primer, 2 mM MgCl2 and 2 U/50 µL of DyNAzyme II
DNA Polymerase (Thermo Scientific, Waltham, MA, USA). The DyNAzyme II DNA Poly-
merase mutation rate is 2.28 × 10−5 mutations per base pair per template duplication. In a
two-step PCR protocol performed with this polymerase, each product molecule could con-
tain an average of 1.28 errors (1.28 nucleotides) (see the legend of Supplementary Table S1
for detailed calculations). In order to estimate the potential contribution of PCR errors
to sequence variability, three independent PCR products for each DNA sample were se-
quenced. PCR fragments obtained from the isolates 1S and 4T were cloned into the pCR 2.1
vector with a TA cloning kit (Invitrogen, Waltham, MA, USA) and then 20 resulted clones
were sequenced per each isolate. Sequence data were analyzed and aligned using the
Geneious Alignment module within Geneious Pro 5.3 Software (Biomatters Ltd. Auckland,
New Zealand).

Polymorphic and parsimony informative sites were computed using the Nei–Gojobori
method as implemented in DnaSP 5.10.01 [16]. To assess selective pressures, the dN/dS ra-
tio of each of the individual 20 clones 1S and 4T was calculated by using the function of the
DnaSP 5.10.01. To estimate nucleotide diversity between strains from the same animal, anal-
yses were conducted using the p-distance model in MEGA X [17,18]. To infer phylogenetic
relationships of the collected BLV isolates, the sequences were aligned to a representative
panel of 27 env gene sequences encoding the gp51 protein, which included all currently
recognized BLV genotypes, 1 to 12, with a wide geographic distribution (Table 1). Phyloge-
netic analysis was performed using the Bayesian inference of phylogeny as implemented
in Geneious Pro, and support for the nodes was evaluated with posterior probabilities.

Table 1. Identity and origin of the 27 sequences used as references in the study.

No GenBank
Accession No

Geographic
Region Genotype Identity Code & Source

1 K02120 Japan 1 Sagata et al. (1985) [19]

2 D00647 Australia 1 Coulston et al. (1990) [20]

3 M35242 USA 1 Mamoun et al. (1990) [21]

4 FJ808597.1 Argentina 2 Rodriguez et al. (2009) [22]

5 AF399704.3 Brazil 2 Camargos et al. (2004) ‡

6 EF065650.1 Japan 3 Zhao et al. (2007) [23]

7 EF065647.1 USA 3 Zhao et al. (2007) [23]

8 K02251.1 Belgium 4 Rice et al. (1984) [24]

9 M35238 France 4 Mamoun et al. (1990) [21]

10 MK820044 China 4 Yang et al. (2019) [25]

11 M35240.1 Belgium 4 Mamoun et al. (1990) [21]

12 FJ808595 Argentina 4 Rodriguez et al. (2009) [22]

13 EF065645.1 Costa Rica 5 Zhao et al. (2007) [23]

14 EF065643.1 Costa Rica 5 Zhao et al. (2007) [23]

15 AY185360.2 Brazil 6 Camargos et al. (2004) ‡

16 MH341523 India 6 Gautam et al. (2018) [26]

17 S83530.1 Italy 7 Molteni et al. (1996) [27]

18 HM563749.3 Russia 7 Rola-Łuszczak (2013) [15]

19 EU262555 Poland 7 Rola-Łuszczak (2013) [15]

20 JQ675759.1 Russia 8 Lomakina et al. (2013) §
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Table 1. Cont.

No GenBank
Accession No

Geographic
Region Genotype Identity Code & Source

21 HM563764 Ukraine 8 Rola-Łuszczak (2013) [15]

22 LC080668 Bolivia 9 Polat et al. (2016) [28]

23 LC080659 Bolivia 9 Polat et al. (2016) [28]

24 KU233547 Thailand 10 Lee et al. (2016) [29]

25 LC154848 Myanmar 10 Moe et al. (2020) [30]

26 OK945975 Kazakhstan 12 Sultanov et al. (2022) [31]

27 OK945977 Kazakhstan 12 Sultanov et al. (2022) [31]
‡ Camargos et al. 2004; direct submission to GenBank. § Lomakina et al. 2013; direct submission to GenBank.

To explore the possibility of recombination a pairwise homoplasy index (Phi) test was
performed and phylogenetic networks were computed using the program SplitsTree4 [32].
The number and positions of the inferred recombination breakpoints and trees derived
from the segmentation of the sequence alignment were calculated using the program
PhyML_Multi, which is built upon the algorithmic structure of PhyML [33]. BIONJ trees
were simultaneously constructed using the PhyML_Multi program.

3. Results

The PCR products of the expected size of 804 bp were successfully amplified and com-
plete env–gp51 gene sequences were obtained from all 16 isolates. The sequence analysis
revealed that for 14 isolates, the sequencing of three independent PCR products yielded
almost identical data, with pairwise identities ranging from 99.9% (3 samples) to 100%
(11 samples). The corresponding consensus sequences were deposited in GenBank and
accession numbers were assigned as follows: 2S–5S (JF720350–JF720353); 5T (HM563754);
6T (HM563783); 1C, 7C–10C (JF720354–JF720358); 2Z (JQ320302); 4Z (HM563779); and 5Z
(HM563780). However, in the case of the 1S and 4T isolates, the sequencing of the three
PCR products revealed the presence of multiple peaks in the electropherograms, suggesting
the presence of a heterogenous population of the virus in these hosts [34]. PCR products
were then cloned, followed by the sequencing of 20 clones per isolate. The resulting se-
quences were submitted to GenBank with the accession numbers JQ353633–JQ353652 and
JQ353653–JQ353672 for the isolates from 1S and 4T, respectively.

Sequence analysis using the Nei–Gojobori method identified the presence of 70 and
60 polymorphic sites with 22 and 27 parsimony informative sites for viral isolate 1S and
4T, respectively. The p-distance analysis showed that the mean genetic distance among
these 20 clones was 2.0% (range: 0.1–4.5%) and 2.1% (range: 0–4.7%) for isolates 1S and 4T,
respectively, as seen in Figures 2 and 3.

The ratio of synonymous (dS) and nonsynonymous (dN) substitutions within env
sequences representing 20 clones of 1S and 20 clones of 4T isolates was calculated
(Supplementary Figure S4A,B). The dN/dS ratios were drawn over the midpoint window
position (window length 20, step size 10) from the whole coding region. The following re-
gions with putative positive selection sites were identified: 61–80 nt, 111–130 nt, 201–220 nt,
251–270 nt, 331–350 nt, 761–780 nt in 1S isolate sequences and 131–150 nt, 251–270 nt,
351–370 nt for 4T isolate sequences, respectively. Seven codons located in these regions had
dN/dS ratios >1 that identified them as major sites for the occurrence of positive selection.
These were codons 23, 40, 88 in conformational epitopes G and H; 50 in CD8 T-cell epitope;
111, 118 in overlapping neutralization domain 2, CD8+ T-cell epitope and Zinc-binding
peptide; and 258 in linear epitope A (Supplementary Figures S6 and S7).
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The Bayesian phylogenetic tree using the entire set of sequences was constructed to
cluster BLV isolates from the Tyumen and Chelyabinsk regions. The analysis of the tree
showed that fourteen isolates clustered clearly with either genotype G4 (6T, 2Z, 4Z, 5Z, 1C,
7C, 8C, 9C, 10C) and G7 (2S, 3S, 4S, 5S, 5T), (Figure 4).
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Figure 4. Bayesian phylogenetic tree based on 804 bp of env gene sequences of BLV isolates. The
tree was midpoint rooted, indicated in the right site of tree by G1–G10 and G12. Numbers on nodes
indicate posterior probabilities. The 83 sequences used in this analysis derived from 20 clones from
each 1S (orange) and 4T (violet) isolate, 14 remaining isolates (shaded in yellow) and 27 reference
data (black). The G11 genotype was not included in the phylogenetic analysis due to the lack of full
gp51 length sequences existing in available databases.
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When 40 sequences representing two isolates 1S and 4T were analyzed, inconsistent
phylogenic assignment was noted, suggesting that they could come from cattle co-infected
with viruses belonging to the genotypes G4 and G7. For the isolate 1S, eight clones were
clustered with genotype 7 and twelve with genotype 4, while for isolate 4T, eleven and nine
clones belonged to genotype 7 and 4, respectively (Figure 4). The structure of variation
within the isolates 1S and 4T, with multiple independent clusters of sequences, indicated
that the identified branches were composed of variants showing the quasi-species nature
of BLV. These results clearly showed a high level of intra-host heterogeneity, possibly
leading to the recombination events. To test this hypothesis, as a first step we employed
the Phi test to analyze the 20 sequences of clones representative for each isolate 1S and
4T which were compared with 14 sequences used in this study and an additional 27 BLV
reference sequences. The results of pairwise homoplasy index tests detected statistically
significant evidence for recombination events occurring among sequences representing a
heterogenic population of BLV virus both in isolate 1S and 4T with p values ranging from
to 3.347 × 10−6 to 2.519 × 10−3 for the sequences from isolates 1S and 4T, respectively.
To identify particular sequences with evidence of recombination, phylogenetic networks
using NeighbourNet mode for the same set of sequences were estimated. As shown in
Figures 5 and 6, the sequences representing four clones of the isolate 1S (1S-c1, 1S-c2, 1S-c9
and 1S-c11) and four clones of the isolate 4T (4T-c1, 4T-c19, 4T-c20, 4T-c21) had positions in
the network that were indicative of recombination.
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for clones of the isolate 4T, analyzed with 14 sequences from the Tyumen and Chelyabinsk regions and
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ticked on the edge of the network. The putative recombinants 4T-c1, 4T-c19, 4T-c20, 4T-c21 are shaded
in blue. The fit index for the split network was 96.5%. A fit index above 90% is considered as robust.

Furthermore, the same set of sequences was subjected to breakpoint analysis using
PhyML_Multi program. Two breakpoints were predicted for four sequences from isolate
1S at positions 240 bp and 542 bp (Supplementary Figure S2A). Accordingly, three sep-
arate BIONJ trees based on the different portions of the alignment clearly identified the
recombinant sequences: 1S-c11 (G4/G4/G7), 1S-c9 (G7/G4/G4), 1S-c2 (G4/G7/G7) and
1S-c1(G7/G4/G7) (Supplementary Figure S2B–D). When sequences derived from the 4T
isolate were analyzed, one breakpoint at position 400 bp of the alignment was predicted.
Two BIONJ trees for each portion of the alignment revealed four recombinant sequences:
4T-c1 (G4/G7) and 4T-c19, 4T-c20, 4T-c21 (G7/G4) (Supplementary Figure S3A–C). To
confirm the incongruence patterns observed in BIONJ trees, we verified these results with
Bayesian phylogenies, and the results were similar, identifying the same eight sequences
with recombination between genotypes 4 and 7 (Figures 7 and 8). Genotype-specific nu-
cleotides in the different fragments manually designated and individually confirming the
breakpoints calculated using the Phylo-HMM algorithm, for each recombinant breakpoint,
are shown in Supplementary Figure S4A–H. The final characteristics of the env sequences
representative for 20 clones of each isolate, 1S and 4T, respectively, are shown in Table 2.
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Figure 7. Bayesian phylogenetic trees from clone sequences from isolate 1S. (A) Color representation
of recombinant sequences with portions similar to genotype G4 in red and portions similar to
genotype G7 in green. Horizontal brown lines indicate the location of inferred recombination
breakpoints. Labeled rectangles in the upper part of figure (yellow, orange) refer to the coding
sequences of antigenic determinants. Epitopes A, B, B′, D, D′, E, E′ (linear), F, G, H (conformational),
ND1,2,3–neutralization domain, CD4+, CD8+, N5, N11 and N12–T cell epitopes, Zbp-Zinc-binding
peptide, GYDP strong turn, THMR–transmembrane hydrophobic region, CXXC sequence in disulfide
bond. (B–D) trees are based on three separate non-recombining regions of env gene, identified via
the Phylo-HMM algorithm and referred to as the 5′ terminus 1–240 bp, 241–542 bp, and 543–804 bp
regions, respectively. Label names are shown in black for G1–G3, G5, G6, G8–G10 and G12 genotype
reference sequences, green for genotype 7 sequences, red for genotype 4 sequences and blue for
putative recombinant sequences.
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Figure 8. Bayesian phylogenetic trees from clone sequences from isolate 4T. (A) Color representation of
recombinant sequences with portions similar to genotype G4 in red and portions similar to genotype
G7 in green. Horizontal brown lines indicate the location of inferred recombination breakpoints.
Labeled rectangles in the upper part of figure (yellow, orange) refer to the coding sequences of antigenic
determinants. Epitopes A, B, B′, D, D′, E, E′ (linear), F, G, H (conformational), ND1,2,3–neutralization
domain, CD4+, CD8+, N5, N11 and N12–T cell epitopes, Zbp-Zinc-binding peptide, GYDP strong
turn, THMR–transmembrane hydrophobic region, CXXC sequence in disulfide bond. (B,C) trees are
based on two separate non-recombining regions of the env gene, identified through the Phylo-HMM
algorithm and referred to as 5′ terminus 1–400 bp and 401–804 bp regions, respectively. Label names are
shown in black for G1–G3, G5, G6, G8–G10 and G12 genotype reference sequences, green for genotype
7 sequences, red for genotype 4 sequences and blue for putative recombinant sequences.
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Table 2. Characteristics of the env clones of studied samples 1S and 4T.

No GenBank Accession No Genotype Identity Code of Samples

1 JQ353633 7 1S-c6
2 JQ353634 7 1S-c7
3 JQ353635 7 1S-c5
4 JQ353636 7 1S-c8
5 JQ353637 4 1S-c12
6 JQ353638 recombinant 4/7 1S-c2
7 JQ353639 4 1S-c19
8 JQ353640 recombinant 4/7 1S-c9
9 JQ353641 4 1S-c15

10 JQ353642 4 1S-c14
11 JQ353643 4 1S-c13
12 JQ353644 4 1S-c17
13 JQ353645 7 1S-c3
14 JQ353646 recombinant 4/7 1S-c11
15 JQ353647 4 1S-c20
16 JQ353648 4 1S-c18
17 JQ353649 recombinant 4/7 1S-c1
18 JQ353650 4 1S-c10
19 JQ353651 7 1S-c4
20 JQ353652 4 1S-c16
21 JQ353653 7 4T-c15
22 JQ353654 7 4T-c13
23 JQ353655 recombinant 4/7 4T-c19
24 JQ353656 7 4T-c11
25 JQ353657 4 4T-c7
26 JQ353658 recombinant 4/7 4T-c1
27 JQ353659 4 4T-c6
28 JQ353660 4 4T-c3
29 JQ353661 recombinant 4/7 4T-c20
30 JQ353662 7 4T-c12
31 JQ353663 recombinant 4/7 4T-c21
32 JQ353664 7 4T-c17
33 JQ353665 7 4T-c16
34 JQ353666 4 4T-c2
35 JQ353667 7 4T-c18
36 JQ353668 4 4T-c5
37 JQ353669 4 4T-c4
38 JQ353670 4 4T-c8
39 JQ353671 7 4T-c14
40 JQ353672 4 4T-c9

To rule out the possibility that sequences from a multi-sample population, amplified
according to our two-step PCR protocol, could generate artificial chimeras, we performed a
separate study. A mixture containing equal amounts of two genomic DNA samples (each
with a copy number of 3 per 103 cells), Goldap/22 and Szczytno/101 isolated from PBL from
Polish BLV-infected cattle representing genotypes G4 and G7, respectively, was amplified
(Supplementary Figure S8). The PCR product G4 + G7 was cloned into a plasmid cloning
vector and 20 clones were randomly selected to prepare plasmid DNA, then both strands of
the plasmid DNA were sequenced (sequence data are shown in Supplementary Figure S9).
The phylogenetic analysis of 20 sequences representing the population with two templates
revealed eight clones clustered with the G7 genotype and 12 clones with the G4 genotype
(Supplementary Figure S10). Detailed sequence alignment analysis of the clones compared
to the Goldap/22 and Szczytno/101 sequences did not show the presence of recombinant
forms between these genotypes or the presence of new genotypes.
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4. Discussion

In this study, we estimate genetic diversity and phylogenetic relationships for a
sample of BLV isolates from 16 cattle specimens from the southwestern part of the West
Siberian Plain. Our analyses indicate that 14 of the infected cattle were infected by a highly
homogeneous viral population with intrahost mean pairwise distances ranging from 0% to
0.1%, and 9 of genotype G4 and 5 of genotype G7. By contrast, the other two specimens
harbored a much more diverse viral population, with intrahost mean pairwise distances
of 2.0% and 2.1%. These results confirm the findings of our previous study indicating
that the G4 and G7 genotypes predominantly circulate in BLV-infected cattle in this part
of the world [15]. However, an unexpected result of this analysis was our inability to
determine the classification of BLV provirus isolates infecting two individuals, named
1S and 4T. PCR cloning and detailed sequence analysis revealed the presence of a dual
infection in these cattle by proviruses belonging to both the G4 and G7 genotypes. These
dually infected animals were found in herds, where the BLV seroprevalence was nearly
75% and the infections with both genotypical isolates coexisted on one farm. The existence
of mixed infections with multiple BLV strains was described under field conditions by
Asfaw et al. but their study was limited to RFLP analysis [35], and by Camargos et al., who
performed in vitro virus amplification [36]. Our results show the presence of dual BLV
infection with viruses belonging to genotypes G4 and G7. It is well known that the direct
contact between animals is a main route of virus transmission under natural conditions [37].
Therefore, it can be assumed that virus transmission in these herds occurred via this route,
and as the animals were naturally exposed to BLV, it was difficult to determine if dual
infection occurred sequentially as superinfection or simultaneously as co-infection. With
regard to the present research, the issue of the occurrence of a superinfection or co-infection
event is a critical question. Through the analogy of the model of cattle immunized with
an attenuated virus and exposed to a circulating wild-type virus with high prevalence in
the animal population, it can be assumed that it is rather impossible to infect an already
infected cow through another BLV due to the strong host immune response [38]. Thus,
superinfection seems illogical, as even cows immunized with the attenuated strain did not
become infected with BLV wild-type from other cows kept with them for over 3 years [38].
Although the mechanism for the development of the dual infection, in our case, cannot be
elucidated in detail, we suppose that it was possibly an accidental co-infection with dual
pathogen genotypes. We also speculate that another possible mode of transmission of the
virus was most likely blood-sucking midges. Western Siberia is rich in river systems which
creates favorable conditions for insect reproduction [39–41].

Genetic stability is a typical feature for viruses belonging to the Deltaretrovirus genus
and distinguishes them from other known retroviruses. Despite the relatively low level
of variability between strains, some studies have shown an intrastrain variability in the
env gene, as was reported for HTLV-1 [4]. However, this knowledge has been neglected in
the study of the genetic variability of BLV. Our results are the first to report the presence
in two animals of 1S and 4T, two clearly distinct proviral populations, showing quasi-
species nature. We speculate that this event corresponded to a very early period after
infection when the samples were collected, and then the active replication of virus had been
manifested by existence heterogeneities in the intra-individual virus population. During
primary infection, when an infected cell with the integrated BLV genome is transmitted
from an infected animal, the virus actively replicates and infects a number of new cells
(the RT-dependent replicative cycle). This phase of BLV infection is limited in time and
lasts from 1 to 4 weeks after infection [42]. The early BLV replication is an RT-dependent
process and that would be why the BLV genetic variability could be the highest during
primary stage of disease. Additional support for this hypothesis comes from a study
by Pomier et al. [43] study carried out on experimentally BLV infected sheep, showing
that during the primary infection of a new host substitutions generated by RT lead to
a mutation load accounting for 69% of the provirus genetic variability on the intra-host
level. Watanabe et al. [44] postulated that the BLV superinfection process with defective
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BLV virus had its place during the early stage of infection. In addition, a second argument,
providing that 1S and 4T animals were in early step of viral infection, was the relatively
low proviral load of 0.35 and 11.3 copy numbers per 103 cells found in these animals,
respectively. In comparison to others studies, similarly low levels of the proviral load (of
approximately 1 copy per 103 cells PBMCs) were observed in cows 2 weeks post inoculation
with a cloned BLV provirus (strain 344) [45]. This illustrates that these two animals did not
show any progression of BLV-induced disease during the BLV infection.

The genetic divergences between the sequences of the clones representing each isolate
from these animals were up to 5% and these values were similar to those noted for the
distances between sequences representative for the twelve known BLV genotypes [30,46]. In
light of these findings, we hypothesize that the broader range of genetic variability observed
for the sequences of isolates 1S and 4T could be related to viral persistence in the infected
host. In addition, the increased genetic diversity among the isolates could trigger differences
in the genotypic and phenotypic features of the replication-competent proviruses and a
broader range of infectivity. For this reason, long-term field investigations regarding the
infected cattle and infected herds from which the samples originated are required.

The ratio of nonsynonymous sites (dN) to synonymous sites (dS) within functional
domains and epitopes was calculated for env sequences representing 20 clones of 1S and
20 clones of 4T isolates (Supplementary Figures S5A,B, S6 and S7). A significantly high
dn/ds value was noted for the G epitope, H epitope, CD8 T-cell epitope and Zinc-binding
peptide, indicating a positive selection for these fragments of env gene [47]. Several studies
have reported that the mutations within the G and H epitopes of the env gene can lead to
structural changes underlying viral escape from immune surveillance [21,23,27,48]. Simi-
larly, the role of CD8 T-cell epitopes in the suppression of the progression of the disease
caused by the virus correlated with the proviral load in BLV-infected cattle [49,50]. There-
fore, we suppose that BLV variants identified here as quasi-species could be undergoing
positive pressure during field infection leading to the development of an adopted form
which can escape from immune surveillance.

The most interesting finding of our study was the discovery of BLV recombinants
among dually infected cattle. Based on the results of phylogenetic network analysis, we
assumed that the recombinant forms were present in PCR clones, generated from both
1S and 4T animals. The recombination occurred between genotype G4 and G7 and was
accompanied by breakpoints distributed in three domains within the gp51 coding region,
CD4+ T-cell epitope (240 bp), ND3 (542 bp) and CD8+ T-cell epitope (400 bp). The possibility
of infection of one cell by at least two different copies of BLV was described inter alia by
Watanabe et al. and Gutierrez et al. [51]. Based on the well-described recombination for HIV,
recombination can occur if two viruses from the same species infect the same host cell and
viral genome templates are exchanged during replication. Accordingly, for BLV, this could
occur if the infection of the same B cell by the two different genotypes G4 and G7 leads to
the production of virions that pack an RNA molecule of both genotypes (Figure 9A,B).

When such virions had infected subsequent target cells, they could produce a mosaic
genome by the exchange of genes or gene fragments due to template switching in RT that
resulted in recombinant viruses such as 1S-c11, 1S-c9, 1S-c2, 1S-c1, 4T-c1, 4T-c19, 4T-c20 and
4T-c21, which were recognized as circulating recombinant forms (Figures 7B and 8B). Up to
now, BLV genotypes G6 and G11 both in the same region have been reported in China [52];
the G1, G5, and G7 were present in Mongolia [53]; G1 and G3 were found in Korea [54] and
G1, G3, and G5 were circulating in Japan [35,55]. However, there were not identified isolates
that inherited the variation sites of two or more genotypes together. Theoretically, there is a
potential for recombination between the isolates of different genotypes for both BLV isolates
coexisting in the same farm, in the same animal. The identified recombination between
G4 and G7 is a new phenomenon for BLV, and such an event may yield new genotypes
or sub-genotypes, which is an interesting theme for further research. The major point of
our study is to highlight the need for a broader study of the intrahost variability of BLV.
Therefore, future research should focus on experimentally infected animals with different
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genotypes, BLV isolates, and a longitudinal study regarding the level of antibodies, proviral
load, time of appearing quasi-species and recombination forms and also an acceleration
of disease progression. In such studies, the use of NGS and inverse PCR (IPCR) should
undoubtedly play a leading role as the optimal tool for studying intrahost genetic variability.
Unfortunately, in the studies presented here, we had a limited amount of genetic material
at our disposal which precluded the use of NGS. Furthermore, it is known that for DNA
samples with the presence of provirus below 500 copies per 105 cells, NGS and IPCR is of
limited use, so in this case this technology was not applied due to the provirus load in the
samples being too low.
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Figure 9. Illustration of the putative recombination in BLV. The scheme illustrates the possible
mechanisms of recombination as it might occur in BLV (A,B). BLV is a diploid retrovirus for which,
when a host cell was simultaneously infected with two strains of BLV (belonged to G4:G4 and
G7:G7) and hence harbored two different proviruses, the RNA transcript from each of the BLV
proviruses could be incorporated into a single heterozygous virion (G4:G7). (A) When this virion
subsequently infected a new B cell and template switching occurred during reverse transcription,
a recombinant retroviral DNA sequence was generated, and all subsequent progeny virions were
of this recombinant genotypes, for example, as was shown on the scheme for putative recombinant
forms (G4/G7:G4/G7) and G4/G7/G4: G4/G7/G4. (B) The recombination would occur during
heterozygous virion formation, already in the first passage (between the two co-infecting RNAs
during heterozygous virion formation).
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5. Conclusions

These results are the first to report a dual infection with two different genotypes of
BLV in the same host, which was associated with the detection of diverse recombinant
forms and viral quasi-species. In BLV infected cattle, this phenomenon is probably only
accidental in nature. Most likely, recombination was the result of RT activity that has to
be preceded by the infection of the same cell by different BLV strains. The presence of
multiple variant genomes (quasi-species) in infected cows was probably recorded during
early co-infection with viruses. As a consequence, these results shed new light on BLV
variability, particularly in the context of the intrahost variation, which can be higher than it
was previously thought. For further study, the degree of intrahost genetic variability and
cross-sectional samples of BLV provirus produced in one animal at one time point should
be investigated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens13020178/s1: Table S1: Sequences of primers used to
amplify, sequence and clone the BLV env-gp51 region; Figure S1: Localization of the P4796, P5791,
P4833 and P5734 primers on the BLV provirus sequence; Figure S2: Detection of recombination events
for 1S isolate. Phylo-HMM identified two recombination positions. Bio neighbor-joining phylogenetic
trees constructed in HMM for each part of the alignment reported four putative recombinants. A-
Two breakpoints predicted at positions 240 bp and 542 bp; three separate BIONJ trees based on the
different portions of the alignment identified these sequences resulted from recombination: 1S-c11
(G4/G4/G7), 1Sc-9 (G7/G4/G4), 1S-c2 (G4/G7/G7) and 1S-c1(G7/G4/G7); B- BIONJ tree based
on sequences beginning from 1 to 240 bp of the gp51; C- BIONJ tree based on sequences ranging
from 241 to 542 bp of the gp51; D- BIONJ tree based on sequences ranging from 543 to 804 bp of the
gp51; Figure S3: Identification of recombination events for 4T isolate. Phylo-HMM identified one
recombination position. Bio neighbor-joining phylogenetic trees constructed in HMM for each part
of the alignment reported four putative recombinants 4T-c1, 4T-c19, 4T-c20 and 4T-c21 marked in
blue. A- One breakpoint predicted at positions 400 bp; B- BIONJ tree based on sequences beginning
from 1 to 400 bp of the gp51; C- BIONJ tree based on sequences ranging from 401 to 804 bp of the
gp51; Figure S4: Genotype specific nucleotides, on the different fragments manually designated
and individually for each recombinant breakpoints confirming the breakpoints calculated using
the Phylo-HMM algorithm. A- recombinant 4T-c20; B- recombinant 4T-c19; C- recombinant 4T-c21;
D- recombinant 4T-c1; E- recombinant 1S-c11; F- recombinant 1S-c1; G- recombinant 1S-c2 and H-
recombinant 1S-c9; Figure S5: Positive selection among analyzed clones within env gene coding gp51
protein. The dN/dS ratio is defined as the ratio of nonsynonymous substitutions per nonsynonymous
site (dN) to the number of synonymous substitutions per synonymous site (dS). A dN/dS ratio of
less than one implies purifying selection, while a ratio of more than one indicates positive selection.
A ratio of approximately one indicates a neutral mutation. Sliding window option: Window length:
20, Step size: 10; Units: Coding positions. The red line describes the level of dN/dS for all the
windows positioned along the entire length of gp51 (804bp). The blue color describes the positive
selection values. A—Positive selection among 20 clones 1S within gp51 was indicated in the following
windows: 61–80, 111–130, 201–220, 251–270, 331–350 and 761–780. B—Positive selection among
20 clones 4T within gp51 was calculated in the windows: 131–150, 251–270 and 351–370; Figure S6:
Codon alignment of env-gp51sequences of 20 clones from the 1S isolate. The labeled turquoise
bars in the upper part of the figure refer to the coding sequences of antigenic determinants (ND1,
2–neutralization domains), CD4+ and CD8+ (T-cell determinants), ZBD (Zinc-binding peptide) and
epitopes A, B, E (linear), G, H and F (conformational). Sliding windows obtained through the DnaSP
analysis and presenting positive selection are indicated by red bars above the consensus sequence.
Nucleotides are numbered based on their position in the coding sequence of the envelope protein
beginning with the “T” of “TGA” codon of the tryptophan; Figure S7: Codon alignment of env-
gp51sequences of 20 clones from the 4T isolate. The labeled turquoise bars in the upper part of the
figure refer to the coding sequences of antigenic determinants (ND1, 2–neutralization domains), CD4+
and CD8+ (T-cell determinants), ZBD (Zinc-binding peptide) and epitopes A, B, E (linear), G, H and
F (conformational). Sliding windows obtained through the DnaSP analysis and presenting positive
selection are indicated by red bars above the consensus sequence. Nucleotides are numbered based
on their position in the coding sequence of the envelope protein beginning with the “T” of “TGA”

https://www.mdpi.com/article/10.3390/pathogens13020178/s1
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codon of the tryptophan; Figure S8: Phylogenetic relationship of BLV genotypes. The relationships
between sequence Goldap/22 and Szczytno/101 isolated from Polish BLV-infected cattle representing
genotypes G4 and G7 (indicated by blue circle, n = 2) and additional reference sequences in GenBank
(n = 27) were inferred via Bayesian analysis of env-gp51 sequences, based on the HKY85 substitution
model. The genotypes are indicated at the right by red vertical lines. Figure S9: Alignment of the
env-gp51 sequences from 20 clones. The nucleotide sequences of the clones represent the result of
cloning the PCR product (G4+G7). The genotypes are indicated at the left by red vertical lines. Figure
S10: Phylogenetic tree created using Bayes calculations, showing the clustering and distribution
of 20 clones (named sequentially from clone 1 to clone 20) derived from a mixture of PCR product
containing Goldap/22 (G4) and Sczytno/101 (G7) and sequences representing known BLV genotypes.
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