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Abstract: Food-producing animals are an important reservoir and potential source of transmission of
antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited.
This study aimed to identify risk factors for AMR in turkey farms in three European countries
(Germany, France, and Spain). Between 2014 and 2016, faecal samples, antimicrobial usage (AMU),
and biosecurity information were collected from 60 farms. The level of AMR in faecal samples
was quantified in three ways: By measuring the abundance of AMR genes through (i) shotgun
metagenomics sequencing (n = 60), (ii) quantitative real-time polymerase chain reaction (qPCR)
targeting ermB, tetW, sul2, and aph3′-III; (n = 304), and (iii) by identifying the phenotypic prevalence
of AMR in Escherichia coli isolates by minimum inhibitory concentrations (MIC) (n = 600). The
association between AMU or biosecurity and AMR was explored. Significant positive associations
were detected between AMU and both genotypic and phenotypic AMR for specific antimicrobial
classes. Beta-lactam and colistin resistance (metagenomics sequencing); ampicillin and ciprofloxacin
resistance (MIC) were associated with AMU. However, no robust AMU-AMR association was
detected by analyzing qPCR targets. In addition, no evidence was found that lower biosecurity
increases AMR abundance. Using multiple complementary AMR detection methods added insights
into AMU-AMR associations at turkey farms.
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1. Introduction

Antimicrobial resistance (AMR) is a global public health concern causing a substantial
health and economic burden [1]. The types of antimicrobials used in food-producing
animals are often the same or closely related to those used in human medicine [2]. Besides,
resistance can spread rapidly and unpredictably through various environments. Therefore,
AMR developed in animals can also be transferred to humans. To combat this, AMR is
being addressed as part of a One Health approach [3,4].

Turkeys and turkey meat are possible sources for the transmission of AMR [5]. Within
the European poultry sector, turkey fattening is the second biggest meat production sector
after broiler production, accounting for around 14% of overall poultry meat production [6].
Recently, monitoring data in European countries has shown that a substantial proportion
of isolates from turkeys are resistant to several classes of antimicrobials [7].

Farm-level risk factors for AMR in turkeys, such as antimicrobial usage (AMU) and
biosecurity measures, have been examined in specific countries [8–13]. For example, AMU
in the flock and evidence of mice were reported as risk factors for ciprofloxacin resistance
in Escherichia coli (E. coli) in Great Britain [8]. In Germany, the floor design of turkey houses
did not affect the development of resistance to enrofloxacin and ampicillin in E. coli isolates
from turkeys [12,13]. However, it is unclear if these risk factors are country specific or not,
because large variation exists between countries and farms in terms of the amount and
type of antimicrobials used [14]. Furthermore, farming practices, including biosecurity
measures, vary between countries and farms. Therefore, risk factors for AMR at a regional
level may not be predictive for other regions or countries.

So far, all studies in turkeys have focused on the prevalence and characteristics of
phenotypic resistance. Bacterial species such as E. coli, Salmonella enterica, and Campylobac-
tor spp. were isolated from faeces and minimum inhibitory concentrations (MIC) were
determined for fixed panels of antimicrobials [8–15]. There are many mechanisms by which
these specific bacteria acquire resistance to antimicrobials. For example, there are multiple
gene families encoding extended spectrum beta-lactamases (ESBL) or plasmid-mediated
AmpC beta-lactamases. The enterobacteriaceae producing these enzymes are resistant to
antibiotics such as penicillins and 3rd and 4th generation cephalosporins. These isolates
can then transfer ESBL or AmpC genes to other bacteria in the gut environment or through
the food chain. In poultry production pyramids, ESBLs are frequently found [16]. There-
fore, culture-dependent methods may underestimate AMR in unculturable gut microbiota.
Genotypic methods enable faecal AMR gene detection. When using metagenomics or
quantitative real-time polymerase chain reaction (qPCR), the abundance and diversity of
AMR genes present in samples can be measured without culturing bacteria. Combining this
kind of AMR data with data on AMU and other potential on-farm risk factors, allows for
exposure-response relationships to be explored [17–19]. Comparing AMR detection meth-
ods provides a better understanding of the complex mechanisms behind AMR occurrence
in food-producing animals.

As part of the Ecology from Farm to Fork of Microbial Drug Resistance and Trans-
mission (EFFORT) project (http://www.effort-against-amr.eu/, accessed on 28 March
2021), the present study aimed to explore AMR in turkeys from 60 farms in three European
countries. The objectives of this paper were to (i) quantify the abundance and diversity of
AMR genes in turkey faeces by applying metagenomics and qPCR, and to (ii) determine
risk factors for AMR such as AMU as well as other potential farm-level risk factors. In
addition, the used AMR quantification methods were compared.

http://www.effort-against-amr.eu/
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2. Results
2.1. Overview of the Sampled Farms and Flocks

General characteristics of the sampled farms (n = 60) are shown in Table 1. The total
number of turkeys per farm varied considerably (median 10,000 turkeys per farm, range:
2950–56,850). We carried out sampling across all seasons: Spring (n = 21), summer (n = 8),
autumn (n = 16), and winter (n = 15). All farms in country H were sampled in spring
and summer. The weight of turkeys at the set up differed substantially between the three
countries, and within country B. In country H, all the farms followed an integrated fattening
process where the turkeys were introduced to the fattening farms after 28 days of life in
breeding, resulting in a small variation in set up weights.

Table 1. Characteristics of the sampled turkey farms and flocks by country and overall countries.

Characteristics
Country

Overall
B E H

Farm Information
Included farms, n 20 20 20 60

No. of turkeys present on the
farm, median (Min-Max)

12,683
(5000–46,500)

7275
(2950–38,000)

12,609
(4404–56,850)

10,055
(2950–56,850)

Farms where other livestock
is present, n (%) 4 (20) 11 (55) 4 (20) 19 (32)

No. of people working at the
farm, median (Min-Max)

2
(1–28)

1.5
(1–3)

1
(1–4)

1.5
(1–28)

Farms sampled in spring and
summer, n (%) 4 (20) 5 (25) 20 (100) 29 (48)

Flock Information
No. of turkeys at sampling,

median (Min-Max) a
4213

(2050–11,660)
4140

(450–9155)
6422

(302–21,356)
4710

(450–21,356)
No. of turkeys at set-up in

the current round in the
sampled house, median

(Min-Max) b

5040
(2997–13,000)

9180
(4240–22,000)

7020
(3000–21,794)

7850
(2997–22,000)

Weight of turkeys at set-up,
kg, median (Min-Max) c

1.5
(0.1–6.4)

0.1
(0.1–0.5)

1.1
(0.9–1.3)

1.1
(0.1–6.4)

Age of turkeys at sampling,
days, median (Min-Max) b

134
(96–147)

116
(74–140)

101
(86–118)

115
(74–147)

Average expected age at
delivery to slaughter, days,

median (Min-Max) b

146
(106–154)

109
(79–138)

117
(95–127)

118
(79–154)

Biosecurity at the Farm
Visitor access more than once

a month (family members,
technicians, etc), n (%)

8 (40) 20 (100) 16 (80) 44 (73)

Outdoor access possible for
turkeys, n (%) 14 (70) 0 (0) 0 (0) 14 (23)

Different age categories of
turkeys present, n (%) 10 (50) 5 (25) 0 (0) 15 (25)

Bird- and vermin-proof grids
placed on the air inlets, n (%) 20 (100) 15 (75) 18 (90) 53 (88)

Staff keeps turkeys or birds
at home, n (%) 2 (10) 7 (35) 1 (5) 10 (17)

Disinfecting footbaths
present on the farm, n (%) 14 (70) 10 (50) 10 (50) 34 (57)

The nearest turkey farm
within 500 m, n (%) 4 (20) 5 (25) 4 (20) 13 (22)

Other livestock farm present
within 500 m, n (%) 12 (60) 18 (90) 7 (35) 37 (62)

Wild birds can enter the
stables, n (%) 1 (5) 6 (30) 8 (40) 15 (25)

Missing observations were excluded to calculate the average. a,b,c The number of farms with missing observations: a 2, b 1, c 10. Biosecurity
status displayed in the table are those significantly associated with the AMR in the applied models.
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The median age of turkeys at sampling was 115 days. Flocks were separated by sex in
country B and H, with the exception of country E where both cocks and hens were usually
housed together with a mobile fence. Therefore, some of the hens within those flocks
had been removed from the house prior to sampling of the cocks. The overall expected
slaughter age was 118 days. For some flocks we could not exactly determine how many
days before slaughter sampling was performed, since these included several groups with
a different expected slaughter date. Consequently, we calculated the average expected
slaughter age per flock.

The biosecurity status at the farm was reduced to two levels. Due to a large number
of questions, the questions that were significantly related with AMR in the applied models
were shown in Table 1 with the number of farms that answered yes. The proportion of
farms that answered yes differed between countries for several biosecurity statuses. For
instance, farms where turkeys had outdoor access were only included in country B (70% of
the farms in country B).

2.2. Antimicrobial Usage

Antimicrobial group treatments applied during the entire rearing period of the sam-
pled flock were quantified using treatment incidence (TI) as a unit of measurement.

There were differences in amounts and types of antimicrobials used between countries
(Figure 1). The mean TI per farm was 8.03, 9.95, and 18.4, in country B, E, and H, respectively.
Aminoglycosides and spectinomycins, and macrolides and lincomycins were grouped
together because they have a common resistance mechanism. The most frequently used
antimicrobial groups across all the farms were beta-lactams, polymyxins, and quinolones.
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Figure 1. Average antimicrobial usage on farm level in 60 turkey farms in three countries. Mean treatment incidence
(TI) shows the average number of treatment days per 100 days. Antimicrobials were grouped after TI was calculated for
lincomycin-spectinomycin combination product and subsequently divided and added to macrolides and aminoglycosides,
respectively. Beta-lactams included aminopenicillins and penicillins. Quinolones included fluoroquinolones and other
quinolones (flumequine). Countries were anonymized as B, E, and H.

The sum of TI at 60 farms is shown in Figure S2. Across all farms, 7 (11.7%) did not
use any antimicrobials (country B:3, E:3, and H:1).

2.3. AMR Genes Identified by Metagenomics
2.3.1. The Abundance and Composition of AMR Genes

In total, 573 different AMR genes were identified in samples from 60 turkey farms
using ResFinder as a reference database [20]. The abundance of AMR genes were quantified
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using normalized fragments per kilobase reference per million bacterial fragments (FPKM)
values. The FPKM values for the different AMR genes were summed for each antimicrobial
class. In general, the composition of AMR genes appeared rather homogenous across
farms despite the difference in AMU, and even when comparing farms that did or did
not use antimicrobials (Figure 2). The clusters of AMR genes encoding for resistance to
tetracyclines, macrolides, and aminoglycosides were most abundant. Moreover, AMR gene
clusters encoding for resistance to aminoglycosides, beta-lactams, macrolides, phenicols,
sulphonamides, tetracyclines, and trimethoprim classes were detected on all farms. A
stacked bar chart showing FPKM values (i.e., not proportional) is shown in Figure S3.
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Figure 2. Relative abundance of antimicrobial (AMR) genes expressed as a proportion of total frag-
ments per kilobase reference per million bacterial fragments (FPKM). Columns represent 60 samples
from 60 farms from three countries (B: n = 21, E: n = 20, and H: n = 19). One additional farm was
visited in country B due to incomplete questionnaire data in one of the farms, resulting in 21 samples
in total. One sample in country H was removed due to errors during processing. The AMR genes
were aggregated to antimicrobial classes. Seven farms where no antimicrobial use was reported in
the sampled flock are indicated with an asterisk above the columns.

The total abundance of AMR genes, expressed as the summed FPKM values differed
between the three countries. The mean total abundance on the farms in country E was
significantly lower than that of country H (One-way ANOVA, Tukey HSD, p < 0.01)
(Figure S4).

2.3.2. Factors Associated with the Abundance of AMR Gene Clusters

Factors associated with the abundance of AMR gene clusters of eight antimicrobial
classes were investigated for 57 farms with complete data (country B: n = 18, E: n = 20,
and H: n = 19). Using a random-effects meta-analysis by country, Table 2 presents the
associations between AMU and the abundance of AMR gene cluster of the corresponding
antimicrobial class. Three significant associations between AMU and the corresponding
AMR gene cluster were detected: Beta-lactam use (penicillin and aminopenicillins) and
beta-lactam resistance, polymyxin use, and colistin resistance, and aminoglycosides or
spectinomycin use (binary variable), and aminoglycoside resistance (p value < 0.1 adjusted
for multiple testing). At farms that reported a higher TI of beta-lactam and polymyxins, a
higher faecal abundance of the corresponding AMR gene clusters was observed. Farms
with reported aminoglycosides or spectinomycin use had a higher faecal abundance of
aminoglycoside resistance genes compared to the farms that did not use these antimicro-
bial classes. However, only one and five farms reported usage of aminoglycoside and
lincomycin-spectinomycin, respectively.
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Table 2. Associations between antimicrobial usage (AMU) and relative abundance of the corresponding antimicrobial
resistance (AMR) genes detected by metagenomics, obtained from a random-effects meta-analysis by country.

AMU AMR Gene
Cluster a Estimate Adjusted p Value b 95% CI

Country and
Number of Farms

with Reported
AMU

Log10 TI
beta-lactam Beta-lactam 1.06 0.033 [0.29–1.84] B-15, E-14, H-18

Log10 TI polymixin Colistin 0.99 0.033 [0.29–1.69] B-4, E-11, H-5
Aminoglycosides
or spectinomycin

used (ref:no)
Aminoglycoside 0.92 0.097 [0.08–1.76] B-3, H-3

Trimethoprim-
sulphonamides

used (ref:no)
Trimethoprim 0.78 0.221 [−0.15–1.71] B-2, E-3

Trimethoprim-
sulphonamides

used (ref:no)
Sulphonamide 0.68 0.282 [−0.26–1.61] B-2, E-3

Log10 TI quinolone Quinolone 0.69 0.338 [−0.43–1.81] B-5, E-4, H-12
Log10 TI

tetracyclines Tetracycline 0.09 0.948 [−0.82–1.00] B-6, E-6, H-9

Log10 TI
macrolides +
lincomycin

Macrolide −0.17 0.948 [−1.35–1.01] B-6, E-12, H-7

Log10 TI total
AMU Total FPKM −0.02 0.948 [−0.62–0.58] B-15, E-17, H-18

Associations in bold have an adjusted p value < 0.1. In the models, 57 farms with complete data were included (country B: n = 18, E: n = 20,
and H: n = 19). AMU = Antimicrobial usage; AMR = Antimicrobial resistance; 95% CI = 95% Confidence interval; TI = Treatment incidence.
a: Relative abundance of AMR genes were clustered per antimicrobial class and calculated as a sum of fragments per kilobase reference per
million bacterial fragments. b: p values were adjusted with Benjamini–Hochberg correction with a false discovery rate set to 10%.

None of the other farm characteristics than AMU were significantly associated with
the abundance of AMR gene clusters after Benjamini–Hochberg multiple testing correction
(adjusted p value ≥ 0.1).

2.4. ermB, tetW, sul2, and aph3′-III Identified by qPCR
2.4.1. Abundance of ermB, tetW, sul2, and aph3′-III

In total, 304 samples were analyzed by qPCR. Across all samples, the number of 16S
rRNA gene copies varied (log10 copies median = 10.8, min = 7.73, and max = 12.8). The
number of 16S rRNA copies were used subsequently to calculate relative concentrations
of the AMR gene copies. After the qPCR quality check, in order to include samples with
a low concentration of sul2 (11 samples) and aph3′-III (20 samples) that were below the
limit of detection or limit of quantification, the following values were assigned: sul2: 5.10;
aph3′-III: 3.62. The unit was the number of gene copies (log10 copies) before normalization
with 16S rRNA. Of those, two aph3′-III samples were removed due to a low abundance of
16S rRNA (log10 16S rRNA copies < 8.51). As a result, 283 (93.1%), 287 (94.4%), 262 (86.1%),
and 269 (88.5%) samples for ermB, tetW, sul2, and aph3′-III, respectively, were available for
analysis. The abundance of the four genes relative to bacterial DNA (16S rRNA), stratified
per country and gene is shown in Figure 3.
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Figure 3. Relative abundance of ermB, tetW, sul2, and aph3′-III in turkey faeces sampled in three countries, detected by qPCR.
Resistance gene log10 copies were normalized using 16S rRNA abundances. The numbers displayed above the horizontal
axis are the number of the samples eligible for analysis.

2.4.2. Factors Associated with the Abundance of ermB, tetW, sul2, and aph3′-III

In the univariate analysis, total AMU (summed TI of all the antimicrobial classes at
farm level) was positively associated with the abundance of ermB (Geometric Mean Ratio,
GMR = 1.86) and tetW (GMR = 1.81). No significant association between AMU and the
corresponding resistance gene abundances were detected (Table S1).

Table 3 presents GMR estimates and 95% confidence intervals of the final multivariable
models mutually adjusted for technical farm characteristics and biosecurity. None of the
biosecurity variables were associated with the abundance of sul2. Linear mixed models
with random effect for country were fitted for all the genes, however, there was no variance
between countries in the final sul2 model.

Trimethoprim-sulphonamide treatment in flocks was positively associated with the
abundance of sul2 in turkey faeces, when adjusted for sampling season and the presence
of other livestock at the farm (GMR = 7.38). No association was detected between the
abundance of ermB, tetW, and aph3′-III and the use of corresponding AMU in multivariable
models. Three biosecurity variables remained in the final ermB model, and two in the
final tetW and aph3′-III models. The abundance of ermB and tetW in faeces was signifi-
cantly lower at farms where visitor access was granted more than once a month, and at
farms where turkeys had outdoor access. The concentration of ermB in faeces was lower
if there were different age categories of turkeys present on the farm. For the abundance
of aph3′-III, having wild bird- and vermin-proof grids placed on the air inlets was posi-
tively associated while having a permanent staff that keeps turkeys or birds at home was
negatively associated.

2.5. Phenotypic Resistance Identified by Minimum Inhibitory Concentrations
2.5.1. E. coli Resistance to Antimicrobials

Ceccarelli et al., previously described the MIC values derived from the turkey faeces
collected in this study [21]. E. coli was successfully isolated from 596 out of 600 samples,
and MIC values were determined by broth microdilution for a fixed panel of 14 antimicro-
bials for those isolates. Epidemiological cut-off values were used to determine non-wild
type susceptible (i.e.microbiological resistant) isolates. However, misinterpretation of
sulphamethoxazole MIC-endpoints (overestimation of resistance) for country B led to the
exclusion of these data from the analysis.



Antibiotics 2021, 10, 820 8 of 20

Table 3. Multivariable model associations between antimicrobial usage (AMU), characteristics, biosecurity measures of the
turkey farms, and the median relative faecal abundance of ermB, tetW, sul2, and aph3′-III per farm.

Model Variables ermB tetW sul2 aph3′-III
GMR [95% CI] GMR [95% CI] GMR [95% CI] GMR [95% CI]

AMU
Log10 TI

macrolides +
lincomycin

1.57 [0.77, 3.23]

Log10 TI
tetracyclines 1.54 [0.80, 2.97]

Trimethoprim-
sulphonamides

used (ref:no)
7.38 [1.61, 33.8]

Aminoglycosides
or spectinomycin

used (ref:no)
1.47 [0.42, 5.14]

Technical farm
characteristics

Age of turkeys at
sampling

(standardized)
0.73 [0.54, 0.98]

Other livestock
present (ref:no) 2.89 [1.17, 7.14] 0.38 [0.15, 0.95]

Sampling season
(ref: autumn,

winter)
0.21 [0.09, 0.48]

Biosecurity
Visitor access more
than once a month

(ref:no)
0.41 [0.22, 0.75] 0.36 [0.21, 0.60]

Outdoor access
possible for

turkeys (ref:no)
0.35 [0.17, 0.75] 0.37 [0.19, 0.74]

Different age
categories of

turkeys present
(ref:no)

0.45 [0.25, 0.83]

Bird- and
vermin-proof grids

placed on the air
inlets (ref:no)

6.32 [1.76, 22.73]

Staff keeps turkeys
or birds at home

(ref:no)
0.27 [0.09, 0.83]

Associations in bold have a p value < 0.05. Technical farm characteristics and biosecurity variables displayed in the table are those
significantly associated with the abundance of each gene in the final models. AMU = Antimicrobial usage; GMR = Geometric mean ratio;
95% CI = 95% Confidence Interval; TI = Treatment incidence.

The proportions of resistant E. coli isolates differed between countries and between
antimicrobials [21]. The proportion of isolates resistant to ampicillin and tetracycline was
higher than 70% in all three countries. The proportion of isolates resistant to ciprofloxacin,
nalidixic acid and chloramphenicol was higher than 55% in country H, whereas those in
both country B and E were less than 35%. Less than 10% of all the isolates were resistant
to cefotaxime, ceftazidime, meropenem, azithromycin, gentamicin, and tigecycline. All
meropenem-resistant isolates were confirmed to be negative for known carbapenemases
by PCR.
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2.5.2. Factors Associated with E. coli Resistance

The univariate association between potential risk factors and the occurrence of E.
coli resistant to ampicillin, tetracycline, and ciprofloxacin from the mixed effect logistic
models are presented in Table S2. These three antimicrobials were selected for this analysis
because both (i) the number of farms on which corresponding antimicrobial classes were
used and (ii) the prevalence of isolates resistant to the antimicrobials were higher than
10%. Significant positive associations were detected between AMU and the occurrence of
E. coli resistant to ampicillin, tetracycline, and ciprofloxacin. The total amount of AMU was
also positively related to resistance to all three antimicrobials. In addition to these three
antimicrobials, a univariate association between polymyxin use and resistance to colistin
was detected (p = 0.001). However, because of model convergence failure, the multivariable
model for colistin resistance could not be investigated. A random intercept for farms was
included in all the models and country intercept was also added to the ciprofloxacin model
because it significantly improved the model fit.

Table 4 shows that there was a significant positive association between AMU at the
farm and resistance of E. coli isolates for ampicillin and ciprofloxacin when mutually
adjusted for other farm characteristics. The presence of a turkey farm within 500 m was
negatively associated with ciprofloxacin resistance of E. coli isolates. Other associations
between biosecurity and resistance of E. coli isolates were not statistically significant after
mutual adjustment for potential other determinants identified in the univariate analysis.

Table 4. Multivariable associations between antimicrobial usage (AMU) and characteristics and biosecurity measures of the
turkey farms and the occurrence of E. coli isolates from turkey faeces resistant to ampicillin, tetracycline, and ciprofloxacin.

Model Variables AMP TET CIP
OR [95% CI] OR [95% CI] OR [95% CI]

AMU
Log10 TI

aminopenicillins 4.10 [1.37, 12.30]

Log10 TI tetracyclines 3.32 [0.75, 14.7]
Log10 TI quinolones 12.85 [4.00, 41.2]

Technical farm
characteristics

Age of turkeys at
sampling

(standardized)
0.83 [0.53, 1.31] 0.74 [0.48, 1.13]

Sampling season (ref:
autumn, winter) 2.13 [0.85, 5.31]

Biosecurity
Other livestock farms
present within 500 m

(ref: no)
0.48 [0.19, 1.18]

Wild birds can enter
the stables (ref: no) 2.67 [0.90, 7.87]

Different age
categories of turkeys

present (ref: no)
0.48 [0.19, 1.20]

The nearest turkey
farm within 500 m

(ref: no)
0.28 [0.11, 0.69]

Associations in bold have a p < 0.05. All OR shown in the table are mutually adjusted for class specific AMU and farm characteris-
tics/biosecurity variables for the specific column. AMU = Antimicrobial usage; OR = Odds ratio; 95% CI = 95% Confidence interval;
AMP = Ampicillin; TET = Tetracycline; CIP = ciprofloxacin; TI = Treatment incidence.
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2.6. Correlations between AMR Genes Abundances Detected by Metagenomics and qPCR

The correlation between an abundance of ermB, tetW, sul2, and aph3′-III detected by
metagenomics and qPCR is shown in Figure S5. Metagenomics samples were pooled at
a farm level and the median of the qPCR samples per farm were used. A significant but
modest correlation was observed for all four genes (p < 0.001, Spearman rho = 0.47–0.74).
The highest correlation was observed for ermB (rho = 0.74).

The abundance of metagenomically-derived AMR genes clustered at the 90% identity
level and present within the macrolide, tetracycline, sulphonamide, and aminoglycoside
class clusters were shown in Table S3. The abundance of ermB, tetW, sul2, and aph3′-III
accounted for 69.0%, 42.3%, 42.6%, and 25.3% of the macrolide, tetracycline, sulphonamide,
and aminoglycoside resistance class clusters, respectively.

3. Discussion

In this multi-country risk factor study on 60 turkey farms, we investigated risk factors
for the faecal abundance of AMR genes in turkeys detected by both metagenomics and
qPCR, as well as the prevalence of resistance in E. coli isolates in turkey faeces collected
in Germany, France, and Spain. We detected positive associations between AMU and
both genotypic and phenotypic AMR, specifically for beta-lactam and colistin resistance
(metagenomics) as well as ampicillin and ciprofloxacin resistance (MIC).

Substantial differences in AMU were observed between farms and countries. The most
frequently used antimicrobial groups were beta-lactams (aminopenicillins and penicillins),
followed by polymyxins, and quinolones (fluoroquinolones and other quinolones). A
previous study on Italian turkey farms reported that polymyxins, penicillins (including
aminopenicillins), and sulphonamides were widely used [22]. A substantial variation in the
use of antimicrobial classes within and between countries is expected since there are many
possible explanations such as differences in antimicrobial stewardship of veterinarians, dif-
ferences in availability of pharmaceutical products, and national legislations [23]. A similar
high variation in AMU was observed on broiler farms from nine European countries [24].

The relative AMR gene composition detected by metagenomics was similar across the
60 included farms, including flocks that did not receive any antimicrobial treatment. This
was in accordance with European broiler studies, where the faecal AMR genes composition
appeared to be roughly similar between farms, despite the absence of AMU in many
flocks [18,25]. Genes encoding for resistance to tetracyclines were the most dominant
cluster, followed by macrolides and aminoglycosides, when clustered at the antimicrobial
class level. This is consistent with previously published gut microbiome data in Polish
turkeys [26]. These classes, however, did not correspond with the most frequently used
antimicrobials in our study. The presence of these AMR gene classes in the faeces of other
animal species is reported in multiple countries, regardless of AMU [25–27]. These AMR
genes may be present in various bacterial species in the gut of turkeys. It suggests that
there are other factors that affect the composition of AMR genes in the gut environment, in
addition to direct AMU. This could include the co-selection of resistance by AMU in the
production round or in previous rounds at the farm, through which antimicrobial residues
and resistant bacteria remained in the environment. The physical transfer of bacteria via
the movement of animals may have contributed as well [28].

Significant positive associations were detected between AMU and the abundance
of corresponding AMR genes for some antimicrobial classes. The result of the random
effects meta-analyses using metagenomics data showed that flocks that received more
beta-lactam and colistin antimicrobials had a higher abundance of the corresponding AMR
genes. Horizontal gene transfer plays a role in the acquisition of beta-lactam and colistin
resistance in addition to chromosomal mutations [29,30]. Therefore, AMU may select for
and thus accelerate such transmission.

Fluoroquinolone use has previously been identified as a risk factor for increased
fluoroquinolone resistance in E. coli [9,12,13]. These studies also reported an increased
prevalence of ampicillin resistant isolates in trials in the absence of ampicillin use [12,13].
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In line with these studies, we also observed that increased fluoroquinolone use was related
to higher proportions of E. coli isolates being resistant to ciprofloxacin. In addition, we
observed an AMU-AMR association for ampicillin in E. coli isolates. Boulianne et al.
reported associations between tetracycline use and the occurrence of tetracycline resistance
in E. coli isolates in Canadian turkey flocks [11]. We also observed positive phenotypic
AMU-AMR associations on tetracycline in our study, which were statistically significant in
the univariate analysis, but with a wide confidence interval. To study more phenotypic
AMU-AMR associations, susceptibility testing in gram positive bacteria such as Enterococcus
spp. could be considered [11].

We found no evidence that good biosecurity measures were related to lower faecal
AMR abundance in turkeys. Our results differ from earlier findings on the association
between biosecurity measures and fluoroquinolone resistance in E. coli in turkey faeces
in Great Britain [8]. They reported that the on-farm presence of mice was a risk factor,
while disinfection of floors and walls at depopulation appeared protective. However,
information on the quantity of AMU in the sampled flock was not included in their study,
so it may be possible that AMU was correlated with the biosecurity factors. In our study,
we could not verify if the presence of mice increases the risk, but we observed that bird- and
vermin-proof grids placed on the air inlets were associated with a higher risk for aph3′-III
detected by qPCR. Additionally, the fact that all the farms provided the same answer for
“there is a preventive vermin control program” and “stables are disinfected after every
round” in our study may suggest that these measures are not associated with variations
of AMR on turkey farms. Chuppava et al. reported that the floor design of the turkey
house did not correlate with the development of ampicillin- and enrofloxacin-resistant
E. coli isolates [12,13]. Furthermore, there was little evidence for associations between farm
biosecurity and the abundance of AMR genes in European broilers [18]. Interestingly, poor
biosecurity such as staff having contact with other birds among others, were in fact related
to a lower faecal abundance of aph3′-III detected by qPCR. In addition, the presence of a
turkey farm within 500 m was negatively associated with E. coli resistance to ciprofloxacin.
However, we cannot explain this phenomenon biologically. Therefore, the relationship
between biosecurity and AMR on turkey farms remains uncertain.

Three different AMR detection methods were used in this study. We observed modest
correlations between the abundance of AMR genes quantified by metagenomics and qPCR.
A possible reason may be the difference in sample selection. For metagenomic sequencing,
the samples were pooled per farm before DNA extraction to represent the farm, whereas
DNA was extracted from five to six samples individually for qPCR analysis to detect
variations within farms. Pooled samples provide a composition representative of the
common AMR genes at the farm [31], whereas the abundance of particular genes may
vary between individual samples. Additionally, a low correlation could be due to the low
concentration of the target genes or inhibition of gene expression [32]. We chose multiple
genes in metagenomic sequencing based on 90% identity level and summed to compare
with qPCR, but we can also speculate that there might have been more genes that qPCR
detects. On the other hand, the agreement between the abundance of genotypic resistance
and phenotypic resistance was not tested. This is because genotypic resistance in this
study represents the abundance in the total faecal bacterial community whereas phenotypic
resistance is specific to E. coli. To compare and predict phenotypic resistance in specific
isolates, whole genome sequencing studies could be performed [33].

Detecting total genotypic resistance in samples, rather than isolating specific bacteria,
is a good choice to find risk factors for AMR genes associated with horizontal gene transfer.
Genotypic detection methods in our study enabled to confirm that AMR genes were widely
present in turkey faeces for some antimicrobial classes such as macrolides and aminogly-
cosides, despite low phenotypic resistance to specific antimicrobials expressed in E. coli.
The strength of metagenomic sequencing was that it showed the composition of AMR
genes in the resistome (the collection of all resistance genes in a sample). Moreover, AMR
genes could be analyzed at several grouping levels, such as at a gene and antimicrobial
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class level. On the other hand, qPCR may be a better choice for detecting specific genes
of interest because of lower costs and simple procedures over metagenomic sequencing.
However, the selection of the most appropriate target gene may be difficult. Our qPCR
target genes were the most abundant gene clusters within the respective antimicrobial
classes. However, such information may not always be available beforehand. Limitations
for both metagenomic sequencing and qPCR lie in the difficulty to compare the results
with other studies since genotypic AMR data in turkeys is still scarce and methods can
vary between studies. In contrast, phenotypic AMR in specific bacteria has been studied
in a standardized manner for monitoring purposes, making it easier to compare results
between studies or to monitor trends over time. However, using dichotomized outcomes
by epidemiological cut-off in our study hampered data analysis for antimicrobial classes
in which the resistant proportion of isolates were low. In summary, we showed that these
methods are complementary and the choice depends on the research question.

Our study is unique considering that farms were included from three European
countries using standardized sampling, which enabled the identification of risk factors
that are not country-specific. We also related AMU and multiple farm-level factors to both
genotypic and phenotypic AMR. However, information on purchased AMU at a farm level
was not available in all countries and could therefore not be studied as an alternative to
group treatments. This could explain the on-farm background levels of AMR in the absence
of reported usage. Moreover, although we included group treatments data at breeding
farms, farm characteristics of those farms were not collected. Both AMU and biosecurity
information of the sampled farms were from farmers’ reports rather than registered data.
Therefore, underreporting of AMU and misclassification or missing biosecurity answers
could have led to social desirability bias. We quantified the 16S rRNA gene to normalize
AMR gene results detected by qPCR, but many bacterial species have more than one
copy of the 16S rRNA gene. There is no suitable approach to correct for copy numbers in
microbiome data [34,35]. Although gut bacterial composition between turkeys may differ,
we expect that this taxonomic difference will not have a large effect on the between group
comparisons. Error in quantification of the 16S rRNA gene that we used to normalize the
AMR genes would lead to a less precise estimate of AMR, resulting in the attenuation of
risk estimates (e.g., AMU-AMR associations). Despite these limitations, our study shows
an association between AMU and AMR on turkey farms, which is a potential exposure
route to humans.

4. Materials and Methods
4.1. Selection of Farms

Between October 2014 and October 2016, 60 conventional fattening turkey farms
were visited in 3 countries (Germany, France, and Spain, 20 farms per country). German
farms were geographically spread over the country, while all French and Spanish farms
were concentrated in Brittany and Andalusia, respectively, both being the major turkey
production sites of these countries (Figure S1). The preferable selection of farms was based
on the following criteria: Conventional farms with an all-in-all-out system and containing
3000–15,000 birds per farm. However, the size criteria were not always met. Farms included
in the study were unrelated. Both farms and countries were anonymized (country B, E,
and H) to ensure that the results cannot be traced back, consistent with previous EFFORT
publications in which data from 9 countries (A to I) was analyzed. The selected farms
cannot be considered representative for the respective countries.

Each farm was visited once to collect faecal samples. On each farm, the unit for
sampling was a turkey house with a flock that had not been moved or mixed with other
flocks except the removal of individual birds before the sampling time. In the flocks, all
animals had received the same group treatments by water, medicated feed, or injection
during their lifetime. The sampling was intended at maximally one week before the final
slaughter date of the hens, but samples were collected randomly regardless of sex. Farms
were visited across all seasons.
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4.2. Questionnaire Data: Antimicrobial Usage, Farm Characteristics, and Biosecurity

Information on all antimicrobials administered as group treatments to the sampled
flock during their whole lifetime were documented by the farmers with the supervision of
the researchers or veterinarians. Before introducing the sampled flock, researchers informed
the farmers on how to document the antimicrobial treatments. Group treatment data
included not only those administered in the sampled farms but also in previous breeding
farms if applicable. Technical farm characteristics and biosecurity status were obtained by
a questionnaire filled out by the participating farmers. Answers in the questionnaire were
entered into EpiData version 3.1 Software (EpiData Association, Odense, Denmark).

4.3. Quantification of AMU

To quantify AMU, TI was calculated based on antimicrobials administered to the
sampled flock, as previously described [21,24]. Defined Daily Dose for turkeys (DDDturkey)
were assigned for all the antimicrobials used on the included farms. Therefore, TI is ex-
pressed as the number of DDDturkey administered per 100 turkey days at risk or the number
of days per 100 turkey days that the flock received a standardized dose of antimicrobials
(1). The latter can also be interpreted as the percentage of time that a turkey is treated with
antimicrobials in its life:

TI =
Total amount o f active substance administered (mg)

DDD turkey (mg/kg/day)× number o f days at risk× kg turkey at risk
× 100 turkeys at risk (1)

For determining “kg turkey at risk”, a standard weight of 6 kg was used according
to the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) guide-
lines [36]. Then, the standard weight was multiplied by the number of turkeys at setup.
“Number of days at risk” was equal to the expected age of slaughter at each farm. When
there were a few different age groups of slaughter batches within the sampled flock, the
average age within the sampled flock was used. From this formula, TI was calculated for
each antimicrobial class per farm. Total TI per farm was also calculated.

For the risk factor analyses, the sum of TI at farm level for each antimicrobial class
was used. Furthermore, we grouped antimicrobials (TIs) that possessed similar mecha-
nisms of resistance, i.e., macrolides and lincomycin, aminoglycosides and spectinomycin.
Since lincomycin and spectinomycin were administered as combination products with a
fixed ratio (lincomycin:spectinomycin, 1:2) [37], TI was first calculated using DDD turkey for
lincomycin-spectinomycin and subsequently divided for each active substance. Aminopeni-
cillin and penicillin were grouped as beta-lactam, fluoroquinolones, and other quinolones
(flumequine) were grouped together as quinolones.

4.4. Sampling and Processing of Faecal Samples

Per farm, 25 fresh faecal droppings were collected from the floor of one turkey house.
After collection, each sample was refrigerated at 4 ◦C and transported to the laboratories
within 24 h.

On arrival at the labolatory of each sampling country, samples for E. coli isolation
were processed. Simultaneously, samples for metagenomics and qPCR were prepared and
stored at −80 ◦C until shipment. Frozen samples were shipped on dry ice to the Institute
for Risk Assessment Sciences (IRAS, Utrecht, the Netherlands).

4.5. Metagenomic Sequencing and Processing Data

Metagenomic sequencing and processing was performed as described previously,
with modifications [25,38]. The reads are available in the European Nucleotide Archive,
under project accession number PRJEB39685.

At the laboratory, the individual faecal samples were homogenized by stirring thor-
oughly with a tongue depressor or a spoon for a few minutes. Twenty-five individual
samples from the same farm were pooled with 0.5 g of faeces from each sample and stirred
for a few minutes. DNA extraction was centrally performed at the Technical University
of Denmark (The National Food institute, Kgs. Lyngby, Denmark). From a 0.2-g sample,
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DNA was extracted using a modified QIAmp Fast DNA Stool Mini Kit (QIAGEN, Hilden,
Germany) [39]. The samples were sequenced on the NovaSeq 6000 platform (Illumina Inc,
CA, USA) by Admera Health (South Plainfield, NJ, USA), using a 2 × 150-bp paired-end
(PE) read approach, aiming for 35 M PE reads per sample.

After removing low-quality nucleotides as well as adaptor sequences, trimmed read
pairs corresponding to each farm-level sample were aligned to the ResFinder database and,
separately, to a merged database of genomic sequences using the k-mer alignment software
KMA (v1.2.8). The ResFinder database repository was accessed on 13 February 2019, and
contained 3081 AMR genes. Read was aligned to the ResFinder database using the KMA
parameters ‘-mem_mode -ef -1t1 -cge -nf -nc’. In order to filter out low-coverage alignments,
alignments that were lower than a 20% consensus of the corresponding reference were
removed. The genomic sequence database was described previously [40]. Reads were
assigned to the the genomic database using KMA parameters ‘-mem_mode -ef -1t1 -apm
f -nf -nc’. The sum of sequencing fragments mapped to the bacteria, archaea, plasmid,
bacteria_draft, HumanMicrobiome, and MetaHitAssembly sub-databases was used as the
sample size factor for the FPKM calculation.

As the unit of outcome, FPKM values were computed as previously described [25].
The values were aggregated at the antimicrobial class cluster level for risk factor analy-
sis. Distribution was checked and a pseudocount of one and log10 transformation was
applied to FPKM values. Furthermore, the values were aggregated at the 90% identity
clustering [41], to analyze the abundance of the specific AMR genes.

4.6. qPCR Analysis

For qPCR analysis, 5 to 6 samples per farm were randomly selected, resulting in
304 samples. Five samples per farm were incldued to depict between-animal variation
which is assumed to be small within one turkey house. From each sample, 0.5 g of faeces
were transferred to a 2-mL cryotube. From a 0.2-g sample, DNA was extracted using a
modified QIAmp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) [39]. For all the
samples, DNA extraction was performed centrally at IRAS, in the Netherlands.

Four AMR genes, ermB, tetW, sul2, and aph3′-III, were selected as qPCR targets. These
genes encode resistance against macrolides, tetracyclines, sulphonamides, and aminoglyco-
sides, respectively. These antibiotic classes of public health relevance were chosen based on
their abundance in metagenomic data of pooled pig and broiler faeces samples collected
within the EFFORT project [25]. In addition, 16S rRNA was targeted for normalization
of the AMR genes to bacterial DNA in each sample. Three gene targets of qPCR assay
(16S rRNA, sul2, and aph3′-III) were performed at the National Veterinary Institute (PIWet,
Puławy, Poland), while the other two (ermB and tetW) were at IRAS. Overall results were
centrally analyzed at IRAS.

A qPCR assay was performed as previously described [ermB, tetW, 16S rRNA [42];
sul2 and aph3′-III [19]]. Briefly, all samples were run in two technical PCR duplicates
with a non-competitive internal amplification control (IAC) to control quality. From raw
amplification data, Ct values were derived by the R project package “chipPCR” [43]. For
each gene, the number of copies derived from the Ct values were normalized to bacterial
load (log10 (copies of AMR gene/copies 16S rRNA)).

Among the samples passing the qPCR quality criteria (IAC and replicate consistency),
those without a quantifiable 16S rRNA concentration were excluded from further analysis
(14 samples). Additionally, sul2 (11 samples) and aph3′-III (20 samples) were below the
limit of detection or limit of quantification. Those samples were assigned a value (in log10
copies) corresponding to the 1st percentile of the distribution when considering all values
of all samples together per gene (sul2: 5.10; aph3′-III: 3.62). Of those, the samples with
a low abundance of 16S rRNA (lower than the 1st percentile of the copy unit of all 16S
rRNA concentrations) were excluded from data analyses because these present very high
normalized values.
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4.7. E. coli Isolation and MIC Determination

Isolation of E. coli and MIC determination was performed as previously described [21].
The individual samples were suspended in buffered peptone water 1/10 (w/v) with
20% glycerol in a 2-mL cryotube and thoroughly mixed. Ten samples from each farm
were selected (no. 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20), resulting in 600 samples for E. coli
isolation. Briefly, all samples were inoculated on MacConkey agar and after incubating
24 h overnight, suspected colonies were isolated and confirmed as E. coli. Isolated samples
were stored individually in buffered peptone water with 20% glycerol at −80 ◦C. Next,
MIC values by broth microdilution were determined for a fixed panel of antimicrobials
by commercially-available microtitre plates (Sensititre, EUVSEC, Themo Fisher Scientific
UK Ltd., Loughborough, UK). The European Committee on Antimicrobial Susceptibility
Testing (EUCAST) epidemiological cut-off values were used to differentiate between wild
type and non-wild-type susceptibility.

4.8. Variable Selection and Statistical Analysis

First, to examine the association between AMR and farm level factors, univariate
models with AMR, and the corresponding AMU were applied, as well as with other
farm-level variables selected from the questionnaires. Next, according to the association
observed in univariate models, multivariable models were built.

All statistical analyses were performed in R version 3.6.1 (https://www.R-project.org,
accessed on 28 March 2021).

4.8.1. Explanatory Variables

The distributions of continuous variables (i.e., AMU, “total number of turkeys at
the farm”, “age of turkeys at sampling”) were explored and log10 transformed in case of
skewness. Age of turkeys was standardized by subtracting the mean and dividing it by the
standard deviation to avoid modeling errors due to scale differences between variables. As
only a limited number of farms (<10) used trimethoprim-sulphonamide, aminoglycosides,
or spectinomycin, we dichotomized these variables. From the questionnaires, the most
important farm characteristics variables were selected based on expert knowledge and
prior studies [8,17,19,44,45].

In the case of a high correlation between technical farm characteristics and biosecu-
rity variables (Spearman ρ > 0.7), technical farm characteristics variables were selected.
Variables without contrast and those with missing values were excluded. One missing
value of age of turkeys in country B was replaced with the median age of the sampled
birds in country B (134 days). All categorical variables were reduced to two levels to avoid
convergence errors in modeling.

Four technical farm characteristics variables, namely, “total number of turkeys at
the farm”, “age of turkeys at sampling”, “other livestock is present at the farm”, and
“season of the sampling”, as well as 19 biosecurity variables fulfilling the above criteria
were considered in the following models (Supplementary Material Part B).

4.8.2. Factors Associated with AMR Gene Clusters Identified by Metagenomics Sequencing

Three samples from farms for which the metagenomic data could not be matched
with the questionnaire data were excluded in the risk factor analysis, resulting in 57 farms
to be analyzed (country B: n = 18, E: n = 20, and H: n = 19). The abundance of AMR
genes clustered at the antimicrobial class level were used as the outcome variable. Eight
clusters with the reported corresponding AMU were chosen for the models. Random
effects meta-analyses by country were performed as previously described [17,18]. First,
linear regressions were calculated per country, after which the overall associations were
calculated using a random effect for country to take the between country variance into
account. To prevent certain countries from largely influencing the estimates, the outcome
variable were standardized (mean 0, SD 1) by country. R package Metafor was used [46].

https://www.R-project.org
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Briefly, univariate associations between AMR gene clusters and corresponding AMU,
technical farm characteristics, and biosecurity variables were examined. Additionally, the
association between the summed FPKM of all the clusters (total FPKM) and total AMU
at the farm was analyzed. p-values were adjusted for multiple testing by the Benjamini–
Hochberg procedure with the false discovery rate set to 10% [47].

4.8.3. Factors Associated with ermB, tetW, sul2, and aph3′-III Identified by qPCR

The abundances of the four genes were averaged at the farm level using the median
value of the five to six samples within each farm to remove correlation in the farms (i.e.,
60 samples in total), instead of adding a random effect for the farms. Random effect for
both the farm and country resulted in convergence errors when modeling. Linear mixed
models with random intercept for each country were applied for both univariate and
multivariable analyses.

First, univariate models were built for each gene to look for factors significantly
influencing the AMR gene concentrations. Subsequently, we applied the step function of
the R lmerTest package, which performs a backward elimination of non-significant effects
in multivariable models [48]. We applied this to the fixed effects while keeping the random
effect for country. The variables included in the full models were: (i) The corresponding
AMU variable, (ii) the variables significantly related with AMR in the univariate analysis
(Satterthwaite’s degrees of freedom method, p value < 0.05), and (iii) four technical farm
characteristics variables because these may be related with AMU and biosecurity variables.
Fixed effect variables were eliminated backward from the full models according to the
p value (alpha = 0.05), while keeping the corresponding AMU variable. To make the model
coefficients more interpretable, all estimates and their 95% CIs were expressed as GMR
values by exponentiating with base 10 coefficients (Table 3, Table S1).

4.8.4. Factors Associated with E. coli Resistance

The occurrence of E. coli isolates resistant to ampicillin, tetracycline, and ciprofloxacin
were used as the outcome variables. These three antimicrobials were selected because
there were more than six farms (i.e., 10% of all the farms) with the reported corresponding
AMU and there were more than 60 resistant isolates (i.e., 10% of all the isolates). Nalidixic
acid was not selected but ciprofloxacin was selected for quinolone resistance. This is
because when using the epidemiological cut-off to define non-wild type susceptible isolates,
nalidixic acid and the fluoroquinolone ciprofloxacin show the same results in proportions
of non-wild type strains. Corresponding AMU variables were aminopenicillin, tetracycline,
and quinolone use (fluoroquinolone and other quinolones). Penicillins were not included
since E. coli is intrinsically resistant to penicillin. At first, it was intended to investigate the
association between polymyxin use and colistin-resistant E. coli, but many models failed
to converge in univariate analysis, which made it impossible to further investigate risk
factors. Mixed effects logistic models with random intercept for farm were applied. A
country random intercept was added when it improved the fit in null models.

Following univariate analysis, the variables significantly related in univariate analysis
(p value < 0.05) were added in the multivariable models. All ORs and their 95% CIs are
shown in the results (Table 4, Table S2).

4.8.5. Comparisons between Metagenomics and qPCR

First, two genotypic resistance methods, namely metagenomics and qPCR samples
were compared. Metagenomics samples were pooled at the farm level while for qPCR
samples, the median value of the five to six samples within each farm were used. Asso-
ciations between the abundance of ermB, tetW, sul2, and aph3′-III clusters as identified
by metagenomics and the abundance of these genes by qPCR were examined by calcu-
lating the Spearman correlation coefficient (Figure S5). In addition, total abundance (i.e.,
summed FPKM of all the farms) per gene level cluster was calculated and the proportion
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of the respective gene within the according macrolide, tetracycline, sulphonamide, and
aminoglycoside class level cluster was calculated (Table S3).

5. Conclusions

We investigated risk factors for AMR in European turkey farms using three differ-
ent AMR detection methods. Positive AMU-AMR associations were detected for both
genotypic and phenotypic AMR: Beta-lactam and colistin (metagenomic sequencing) and
aminopenicillin and fluoroquinolone (MIC). No robust AMU-AMR association was de-
tected by analyzing qPCR targets. No evidence was found that lower biosecurity increases
AMR abundance. We showed AMR genes encoding for some antimicrobial classes were
abundant in faeces despite the low prevalence of phenotypic resistance in E. coli isolates.
Since different AMR detection methods provide information on different aspects of AMR,
the choice depends on the availability of resources and research questions. We have shown
that using multiple complementary AMR detection methods adds insights into AMU-AMR
associations in turkey farms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10070820/s1, Part A: Figure S1: Distribution of the 60 turkey farms across three
countries; Figure S2: Antimicrobial usage in 60 farms in three countries, expressed as the sum of
treatment incidence (TI); Figure S3: Abundance of antimicrobial resistance (AMR) genes detected
by metagenomics per farm, expressed as fragments per kilobase reference per million bacterial
fragments (FPKM); Figure S4: Total abundance of antimicrobial resistance (AMR) genes detected
by metagenomics per country, expressed as the sum of fragments per kilobase reference per million
bacterial fragments (FPKM); Figure S5: Correlations between the abundance of ermB, tetW, sul2, and
aph3′-III genes detected by metagenomics and those genes detected by qPCR; Table S1: Univariate
associations between antimicrobial usage (AMU), technical farm characteristics, biosecurity measures
of turkey farms, and the median relative faecal abundance of ermB, tetW, sul2, and aph3′-III per farm;
Table S2. Univariate associations between antimicrobial usage (AMU), characteristics, biosecurity
measures of the turkey farms, and the occurrence of E. coli isolates from turkey faeces resistant to
ampicillin, tetracycline, and ciprofloxacin; Table S3: Ten most abundant antimicrobial resistance
(AMR) genes in turkey faeces quantified by metagenomics and their proportion within the macrolide,
tetracycline, sulphonamide, and aminoglycoside class clusters; Part B: Selected biosecurity check
questions from the questionnaire used in risk factor analyses.
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