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Abstract: Listeriosis is a serious food-borne illness, especially in susceptible populations, including
children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile
gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infec-
tions, and abortion. Expression of each symptom depends on various bacterial virulence factors,
immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly
InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are
responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing
protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate
through the blood and invade diverse host organs. In persons with impaired immunity, the elderly,
and pregnant women, the pathogen can also cross the blood–brain and placental barriers, which
results in the invasion of the central nervous system and fetus infection, respectively. The aim of
this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis
and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus
on their molecular and cellular aspects. We believe that all this information is crucial for a better
understanding of the pathogenesis of L. monocytogenes infection.
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1. Introduction

This comprehensive review, based on the most important literature available on the
Web of Science Core Collection published until October 2022, aims to summarize the current
knowledge on L. monocytogenes virulence mechanisms that are involved in host infection,
with a special focus on their molecular and cellular aspects. Firstly, the epidemiology of
listeriosis is briefly described. Then, key findings related to surface molecules expressed by
the pathogens during intestinal infection and cell-to-cell spread as well as dissemination
in the host following the brain and placenta colonization are presented. Finally, recent
data regarding treatment and prevention of listeriosis in humans are summarized. We
believe that all this information is crucial for a better understanding of the pathogenesis of
L. monocytogenes infection and prevention of this serious food-borne disease.

Listeria monocytogenes was first identified by Murray, Webb, and Swann in 1924, as a
gram-positive bacillus responsible for epidemic cases of mononucleosis, a disease affecting
laboratory rabbits and guinea pigs, and named it Bacterium monocytogenes [1]. A few
years later, similar bacteria were isolated from humans in Denmark by Nyfeldt, who
described that this microorganism was the cause of infectious mononucleosis [2]. Then,
L. monocytogenes was recognized as a cause of sporadic infections in workers contacted
with diseased animals [3]. Currently, L. monocytogenes is considered as one of the most
dangerous bacterial pathogens responsible for food-borne illnesses in humans [3,4].

At present, the genus Listeria consists of 26 species, including 18 Listeria species
recognized and described for the first time in 2009 [5–7]. However, only two species, L.
monocytogenes and L. ivanovii, are considered pathogenic for humans, but the infections of
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people with the latter one are very rare [8,9]. There is also little information on L. seeligeri
isolation from human sporadic listeriosis cases [10]. Furthermore, L. innocua has been
identified in a person with fatal listeriosis, which suggests that at least some strains of this
Listeria species are pathogenic for humans and may be able to cause the disease [11].

L. monocytogenes has been often identified in domestic and wild animals, and especially
ruminants are mostly affected, often without any clinical symptoms, but excreting the
bacteria in their feces [12]. Bacteria occur ubiquitously in nature and have been detected
in surface water, soil, plant, silage, sewage, and food production environments. They are
able to grow at various temperatures ranging from −0.4 ◦C to 45 ◦C, pH between 4.6 and
9.5, and have the ability to persist in salt concentrations up to 20% [13,14]. These features
allow L. monocytogenes to survive and multiply under extreme environmental conditions
often present at food production facilities [15,16]. Thus, it is one of the most important
food-borne pathogens responsible for sporadic infections or disease outbreaks, admittedly
with rather low case numbers, but with a high mortality rate of 20–30% worldwide [17]. The
food-connected way of L. monocytogenes infection in humans was unclear until the 1980s,
when, during several outbreaks in the USA and Switzerland, various foods including dairy
products, meat products, seafood products, and vegetables were indicated as the source of
bacteria [18,19]. Infection via direct contact with animals or humans with listeriosis or with
contaminated environments is also possible, although it is very rare [20–22].

The incidences of listeriosis worldwide are very low compared to other food-borne
infections, but it is a disease with a very high hospitalization rate of over 95% and high
mortality [23]. The recent EFSA and ECDC report for the year 2020 showed that 1876
laboratory confirmed invasive listeriosis cases in humans were noted in the European
Union (EU), with the notification rate of 0.42 cases per 100,000 population [4] (Figure 1).
The disease was most commonly reported in the age group over 64 years, covering 72.5%
of all cases (1360 persons) [4]. Among all infected persons, 780 required hospitalization
and 167 died, mainly patients of the age 64–84 years (58.1%) and over 84 years (20.8%) [4].
The number of listeriosis cases, the incidence of the disease per 100,000 population, and
the number of deaths in the EU countries during 2011–2020 are shown in Figure 1. In the
USA, the Centers for Disease Control and Prevention estimate that about 1600 people are
suffering from invasive L. monocytogenes infection each year, with the hospitalization rate
of ca. 94% and about 260 deaths [23].
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Figure 1. Incidence of listeriosis in humans in the European Union countries between 2011 and 2020.
In 2020 data from the United Kingdom, as non-EU members were not provided.
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The infection with L. monocytogenes is especially dangerous for the elderly, pregnant
women, unborn babies, and persons with impaired immune systems, e.g., those with AIDS
or cancer, or people after transplantation of different organs [24]. It has been estimated that
persons with AIDS have a 500 times higher chance to fall ill with listeriosis compared to
immunocompetent people of the normal population [25].

The incubation time of listeriosis varies widely according to the clinical form of the
disease, from one day, when the non-invasive variants occur, to even 70 days during the
invasive form [21,26]. A longer period is observed for pregnancy-associated cases (range
17–67 days) than for central nervous system-associated infections (range 1–4 days) and
for bacteremia (range 1–12 days) [26]. Infection of healthy persons with L. monocytogenes
often manifests as diarrhea with febrile, usually self-limited or may be also asymptomatic;
whereas in some individuals, especially those who are immunosuppressed, it can cause
invasive listeriosis [27]. However, most patients recover after 24–72 h without any medical
treatment [28,29]. The frequency of non-invasive gastrointestinal listeriosis is difficult to
establish, mainly because of its unspecific symptoms [12].

Generalized infections due to L. monocytogenes affect about 20–40% of patients with the
invasive form of the disease. The clinical symptoms of septicemia, such as fever, myalgia,
and general malaise, are similar to other etiologic agents causing bacteremia [30]. The
infected persons often appear severely ill with fever, nausea, vomiting, and malaise [30,31].
This form of listeriosis is usually complicated with disseminated intravascular coagulation
and multi-organ failure such as myocarditis and valvular endocarditis, hepatitis, and en-
dophthalmitis [7,32]. Eventually, the infection can develop into septic shock and death [20].
The mortality rate has been estimated at 20–30% [27,33].

In adults with the invasive form of listeriosis, the most common clinical signs are
related to meningitis, due to the bacterial tropism to the central nervous system [27]. Ac-
cording to surveillance data, around 20–25% of L. monocytogenes infection cases resulted in
invasion of the bacteria to the central nervous system (CNS) [34–36]. Other epidemiological
data show that human neurolisteriosis occurs in up to 79% of non-perinatal and 19% of
perinatal cases, with mortality rates from 17% to 30% [37,38].

2. Pathogenesis of Listeriosis

The schematic L. monocytogenes infectious cycle in the human host is shown in Figure 2,
and the main virulence factors involved in pathogenesis of infection are presented in Table 1.
Listeriosis is mainly a result of ingestion of contaminated food, and it is a typical food-borne
disease, where the gastrointestinal tract is the primary site of entry of the microorganism
into the host [7,20,39]. However, the disease can sometimes be a result of either local
infection of other surfaces (the cornea and conjunctiva of the eye or skin) or the genital
tract [21,32]. The infective dose of L. monocytogenes for humans is difficult to experimentally
assess, but it has been estimated at 104 to 107 cells in susceptible persons (e.g., immuno-
compromised people), to more than 107 bacteria in healthy individuals [40–42]. However,
during the listeriosis outbreak in the USA identified in 2015, the prevalence of L. monocy-
togenes was estimated at even less than 100 cells in 1 gram of consumed ice cream [41,43].
It generally seems that L. monocytogenes is less pathogenic compared to other food-borne
bacterial pathogens, which has been confirmed in a mouce animal model where LD50
values for orally and parenterally infected animals were estimated at 109 and 106 cells,
respectively [44–46].
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Figure 2. Schematic L. monocytogenes infectious cycle in the human host. Bacteria enter the host
through contaminated food and invade the epithelial cells, potentially causing gastroenteritis. Cross-
ing the intestinal barrier, the bacteria spread via blood to their primary target organs (liver and spleen).
Then, the bacteria may spread to secondary target organs (uterus, brain), resulting in abortion in
pregnant women or meningoencephalitis, respectively.

2.1. Passage through the Gastrointestinal Tract

L. monocytogenes can colonize the gastrointestinal tract due to its resistance to gastric
and biliary acids [47] (Figure 2). A low pH environment, present both in the stomach and
duodenum, makes a significant barrier for L. monocytogenes [48,49]. It has been shown
that persons treated towards reduction of gastric acid secretion (e.g., with proton pump
inhibitors) represent a higher risk of invasive listeriosis [50]. However, the bacteria are able
to adapt to this low pH environment, utilizing different cellular and molecular mechanisms
(Table 1).
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Table 1. L. monocytogenes main virulence traits involved in pathogenesis of listeriosis.

Virulence Gene Gene Product/Function Function Reference

Survival in the intestine

gadD1-gadD3 Glutamate decarboxylase (GAD)
system Acid tolerance

[51,52]

arcABC Arginine deiminase (ADI) pathway [53,54]

bsh Bile salt hydrolase

Bile tolerance

[55]

bilE Bile exclusion system [56]

sigB General stress sigma factor [57]

Epithelial cell adhesion

lmo1413 Listeria-mucin-binding invasin A Intestinal mucus penetration [58]

inlA Internalin A (InlA)

Adhesion and entry to enterocytes

[59]

inlB Internalin B (InlB) [60,61]

lap Listeria Adhesion Protein (LAP) [62,63]

inlP1; inlP4 Internalin P1 (InlP1); internalin P4
(InlP4) Invasion and intracellular proliferation [64]

Dissemination in the host

inlF Internalin F (InlF) Adhesion and invasion of macrophages [65]

hly Listeriolysin O (LLO)

Escape from L.
monocytogenes-containing vacuoles

[66]

ifi30 Gamma-interferon Inducible
Lysosomal Thiol reductase (GILT) [67]

pplA Peptide pheromone-encoding
lipoprotein A (PplA) [68]

actA Actin assembly-inducing protein
(ActA) Cell-to-cell spread

[69,70]

inlC Internalin C (InlC) [71]

vip Cell invasion LPXTG protein (Vip)

Brain colonization

[72]

inlF Internalin F (InlF) [73]

inlB Internalin B (InlB) [74]

inlP Internalin P (InlP) Placenta colonization [75]

Several studies have shown that in vitro adaptation of L. monocytogenes to acidic pH of
5.5 for 2 h induces the tolerance to higher acid concentrations, including resistance to lethal
acidic shock [76–78]. This process is a result of the bacteria increasing cytoplasmic buffer
capacity through either the glutamate decarboxylase (GAD) system or the activity of an
internal proton pump [51,77]. It has been shown that the GAD system is one of the major
mechanisms responsible for the maintenance of the bacterial intracellular homeostasis [51].
The whole GAD mechanism is encoded by five genes, responsible for expression of decar-
boxylases (gadD1, gadD2, and gadD3) and production of antiporters (gadT1 and gadT2) [52].
All these genes are localized at the listerial stress survival islet (SSI-1) [78]. Interestingly,
this islet also encodes another gene, a putative penicillin V acylase, that is required for L.
monocytogenes bile tolerance [56]. It has been shown that isolates with deleted SSI-1 were
significantly affected in terms of growth in foods and biofilm formation, suggesting an
important role of this islet in survival in adverse environmental conditions, including the
human gastrointestinal tract [79].

Recently, Bai et al. [80] demonstrated that L. monocytogenes with biofilm-forming
ability showed a significantly decreased adhesion and invasion to Caco-2 and HCT-8
cells in vitro compared to that of their planktonic counterparts. Furthermore, such sessile
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cells also showed significantly lower transepithelial translocation than the planktonic L.
monocytogenes variants and, thus, possibly have a reduced virulence potential. The authors
have also shown that planktonic strains caused significantly more cell damage than the
corresponding biofilm-isolated cells [80]. Additionally, it has been demonstrated that the
biofilm-isolated L. monocytogenes possessed a temporarily attenuated capacity to translocate
across the gut barrier and to disseminate in the blood circulation during the early phase
of infection (12–24 h), while both planktonic and biofilm-isolated bacteria were able to
disseminate to extra-intestinal tissues similarly at 48 h in a murine model due to reduced
expression of regulatory proteins (listeriolysin regulatory protein, PrfA, and the general
stress sigma factor σB) and virulence factors (InlA, listeriolysin O) [80].

Another important cell system that protects L. monocytogenes from adverse environ-
mental low pH is connected with the arginine deiminase (ADI) pathway, in which two other
enzymes, carbamoyltransferase and carbamate kinase, encoded by the arcABC operon, are
involved [54] (Table 1). During this action, ammonia as a byproduct binds to intracellular
protons to produce NH4+ and maintain the cytoplasmic pH, thereby protecting the L. mono-
cytogenes cell from adverse acidic extracellular environments [53,79,81]. Interestingly, the
ADI pathway is not active in the non-pathogenic Listeria species, e.g., in L. innocua [48]. Both
GAD and ADI pH adaptation systems in L. monocytogenes act simultaneously and make the
bacteria able to survive and adapt to acid stress conditions present in the gastrointestinal
tract [47,48].

A further adverse gastrointestinal component to overcome by L. monocytogenes during
host infection is bile, which is produced in the liver and stored and concentrated in the
gallbladder [55]. Bile contains several components such as ions, cholesterol, proteins, bile
salts, and pigments [82]. Among them, the most important in terms of L. monocytogenes
survival in the intestine are bile acids that play a role in the disruption of the bacterial cell
wall and membrane proteins and induce DNA damage and oxidative stress in bacterial
cells [55]. The molecular mechanisms involved in the protection of L. monocytogenes from
the adverse action of bile acids and the possible role of bile in the development of listeriosis
is not fully understood yet [55]. It is known that bacteria excrete a bile salt hydrolase
(Bsh), which is the enzyme that removes some amino acids from the bile salts, decreases
their antibacterial activity, and has a positive influence on the bacterial survival in the
gastrointestinal tract [55,83]. The expression of the bile salt hydrolase encoding gene (bsh)
in L. monocytogenes depends on the general stress sigma factor σB, which can activate
several protective genes during stressful external conditions [84,85]. It has been shown that
L. monocytogenes that lack the bsh gene show decreased resistance to bile in vitro, which
results in a lower bacterial number in the feces of orally infected guinea pigs as well
as reduced virulence potential and liver colonization of such bacteria after intravenous
inoculation of mice [86]. Moreover, the bsh gene and bile salt hydrolase activity are present
in all human pathogenic Listeria strains, which may suggest a relationships between L.
monocytogenes resistance to bile salts and its ability to colonize the intestinal surface and
develop into listeriosis [86].

It has been also shown that L. monocytogenes housekeeping sigma factor σA, which
generally directs expression of genes required for normal bacterial growth, plays a compen-
satory role in the absence of σB under bile exposure [87].

Another bile resistance mechanism identified in L. monocytogenes is connected with
bile exclusion protein (BilE) regulated under the prfA virulence gene, which encodes the
expression of listeriolysin regulatory protein PrfA [56]. The BilE protein action against bile
also depends on the mentioned σB regulon, which moderates the activity of PrfA during
the host infection [57,88,89].

2.2. Epithelial Cell Adhesion

After overcoming host gastrointestinal barriers related to low pH and adverse bile
activity, L. monocytogenes adheres to respective epithelial cell receptors and enters non-
phagocytic epithelial cells [90]. Bacteria possess several different factors that allow them
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to penetrate the mucus layer of the intestine, composed mainly of mucins secreted by the
goblet cells, e.g., the Listeria-mucin-binding invasin A (Lmo1413) and internalins (InlB, InlC,
InlJ, and InlL) [58,91,92] (Table 1). These virulence factors are covalently attached to the
cell wall peptidoglycan via the putative peptidoglycan-bound LPXTG protein motif and
facilitate bacterial adhesion or invasion of the host cells [93,94].

L. monocytogenes possesses the ability to pass through intestinal, blood–brain, and
fetoplacental host physiological barriers, but the gastrointestinal tract is the primary route
of infection [95]. The bacteria may use different routes to pass through the intestinal
mucosa [96]. One of them is transcytosis through the invasion of goblet cells and enterocytes
of the small intestinal villi [43,97]. To reach the surface of the epithelial cells, L. monocytogenes
uses mainly two members of the surface-exposed leucine-rich repeat (LRR) proteins of the
internalin family, namely internalin InlA and InlB, that bind to E-cadherin and hepatocyte
growth factor (HGF) Met receptors on the surface of host cells, respectively [59,98–100].
Such interaction between the pathogens and the host does not cause significant intestinal
inflammation or damage of the intestinal barrier [44]. Internalin A is a cell wall-anchored
80 kDa protein composed of 800 amino acids with a leucine-rich repeat domain with
15 LRRs [90]. Furthermore, the inlA gene contains a sequence encoding the signaling
peptide at the N-terminal and the LPXTG motif at the C-terminal [43]. L. monocytogenes
possessing the truncated inlA gene, which results in the shorter length of InlA protein,
showed a reduced virulence potential compared to the strains with full-length InlA [101].
The intact internalin sequence has been identified in the vast majority of the clinical L.
monocytogenes strains, whereas the inlA truncated gene is more frequent among strains
of food origin [102–104]. On the other hand, there are also reports which show that L.
monocytogenes isolates with the truncated inlA gene and expressing the non-functional
internalin A possess an invasion efficiency in Caco-2 cells and a high pathogenic potential
for humans [96,103,105,106].

E-cadherin, the adhesion molecule for InlA, is localized at the basolateral surface
of the small intestine cells, including enterocytes localized at villi and junctions between
mucus-secreting goblet cells [107]. In enterocytes, E-cadherin is mainly present at ad-
herence junctions and below tight junctions; therefore, it is not exposed to the intestinal
lumen [108,109]. E-cadherin is composed of 882 amino acids with 3 main domains: a
555-amino-acid-long N-terminal extracellular part, a transmembrane domain, and a short
cytoplasmic part with 152 amino acids [110]. InlA interaction with E-cadherin induces
actin cytoskeleton re-arrangements and β- and α-catenins, vezatin, myosin VIIA, Arp2/3,
cortactin, and clathrin-mediated endocytosis, resulting in L. monocytogenes internaliza-
tion [95,111].

Attachment of the internalin A-expressing bacterial cells to E-cadherin allows L. mono-
cytogenes internalization into enterocytes and, subsequently, translocation across the in-
testinal barrier. Using cell line and animal models, it has been shown that internalin B is
also involved in bacterial internalization at small intestine villi, mainly through promoting
endocytosis of junctional components [61]. Although the small intestine is the main site
for L. monocytogenes host invasion, experiments with transgenic mice demonstrated that
bacterial InlA-dependent translocation was also observed at the cecum and the colon of the
large intestine [112].

The second important internalin responsible for L. monocytogenes binding to host cells is
internalin B, encoded by the inlB gene located downstream of the inlA sequence [60,61,113].
The inlAB operon is upregulated during L. monocytogenes passages through the intestinal
lumen [114]. It binds by interactions to the c-Met cell receptor, with the collaboration of
gC1qR and glycosaminoglycans as co-receptors that are involved in stabilization of the
junction between InlB and c-Met [115,116]. The c-Met receptor is present on different host
cells, which allows L. monocytogenes to adhere via InlB to various sites [110]. Thus, InlA
exhibits a more restricted cell tropism because the internalin A receptor E-cadherin is
mostly present at epithelial cells [110].
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Expression of the inlAB locus is regulated by the transcriptional regulator PrfA [89,117].
Additionally, activation of inlA may be regulated by the general sigma factor σB regulon
via the σB-dependent promoter sequence located upstream of the inlA gene [118]. It
has been shown that internalin B promotes invasion of intestinal epithelial cells by L.
monocytogenes when InlA–E–cadherin interactions are functional [112,119]. However, there
is also information that InlB plays an important role in this step of bacteria invasion in the
absence of functional InlA [61,119–121].

The internalin proteins are secreted through the SecYEG translocase that transports
proteins across and into the cytoplasmic membrane, and have an amino-terminal cap
region followed by an LRR domain [122–124]. Additionally, several internalins possess an
adjacent inter-repeat (IR) domain that is essential for the binding of the LRR domain to
E-cadherin [44,123].

In L. monocytogenes adhesion to host epithelial cells, the Peyer’s patches are also
involved [96]. As shown in the mouse model, this process is InlB-dependent [60,113].
However, L. monocytogenes expressing a murinized InlA, which interacts with N-cadherin
expressed in Microfold (M) cells, exhibits increased invasion to this target [96]. L. monocyto-
genes passes through the Peyer’s patches through M cells in an InlA-independent manner
and infects CX3CR1+ myeloid cells, stimulating the expression of interleukins IL-12 and
IL-23 [125]. Subsequently, IL-22-/IL-11-dependent epithelial proliferation is activated,
which leads to a decrease in the number of mature goblet cells and locks InlA-dependent
pathogen entry through intestinal villi [126]. Following adhesion and internalization into
M cells, bacteria are able to spread to the adjacent enterocytes [127].

L. monocytogenes may express, other than InlA and InlB, surface-associated and secreted
molecules that play a role in adhesion and entry into host cells. Examples of these are the
internalins InlE, InlG, and InlH that support the InlA-dependent invasion and modulate
the bacterial cell wall organization, and consequently affect InlA exposure [128]. Other
putative listerial virulence factors that may modulate cell adhesion and invasion processes
are surface adhesins or invasins Ami, Auto, IspC, ActA, Vip, and others, whose roles in
pathogenesis of listeriosis have not been deeply clarified [69,129].

Recently, Cahoon et al. [130] described the two-component system PieRS regulates
secretion of chaperones PrsA1 and PrsA2 (positive regulatory factor A). It was previously
shown that PrsA2 plays a role in invasion, replication, and cell-to-cell spread of L. monocy-
togenes within the infected host [131,132]. In contrast, PrsA1, although showing 75% amino
acid similarity with PrsA2, is probably not involved in pathogenesis of L. monocytogenes
infection [133].

Several other protein molecules also play a role in the L. monocytogenes initial step
of the host cells’ invasion. Among them, the most important seems to be listeriolysin O
cytotoxin, which is involved in bacterial escape to the cytoplasmic space [134]. Furthermore,
LLO also has a positive influence on L. monocytogenes cell invasion in InlA/InlB-dependent
and -independent manners [135]. It has been experimentally shown that listeriolysin O is
involved in the induction of L. monocytogenes entry to the HepG2 and HeLa cell lines in the
absence of InlA or InlB signaling [136].

2.3. Epithelial Cell Invasion

L. monocytogenes adhered to the E-cadherin or c-Met host receptors is then covered by
a phagocytic vacuole in macrophages and enters cells [117]. L. monocytogenes, unlike other
bacteria, is not destroyed inside the host cell vacuoles due to the production of endogenic
factors, mainly listeriolysin O (LLO), a pH- and cholesterol-dependent toxin with pore-
forming activity, and GILT (Gamma-interferon Inducible Lysosomal Thiol reductase),
found inside the phagosome, which mediate vacuole degradation and bacteria escape
to the cytosol [67,137]. LLO is a protein of 56 kDa molecular weight belonging to the
cholesterol-dependent cytolysins (CDCs) protein family [138] It effectively binds to lipid
membranes characterized with a high concentration of cholesterol [138]. Afterwards, LLO
monomers oligomerize to complexes and then undergo a major conformation change that
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allows them to penetrate the cell membrane and make pores [139]. LLO induces rapid
intake of calcium ions inside the host cell and potassium ions efflux, and this process is
continuously expressed during the whole intracellular lifecycle of L. monocytogenes [140].
Mutants lacking LLO are unable to escape from the phagosome and, consequently, are
unable to grow intracellularly [141,142].

There are also mechanisms other than LLO-dependent mechanisms that modulate the
L. monocytogenes vacuolar infection stage. Bacteria may secrete a peptide pPplA (peptide
Pheromone-encoding lipoprotein A) that enhances their escape from host cell vacuoles
by activation of the production of an unknown factor that cooperates with LLO in vac-
uolar damage [68]. Another putative vacuole-related factor is a small GTPase Rab5a,
which was shown to control the accelerated maturation of L. monocytogenes-containing
vacuoles [143,144].

Escaping from the vacuole, a bacterium uses host sugars for its survival and multipli-
cation [3]. Recently, Cheng et al. [140] demonstrated that the listeriolysin O pore-forming
activity also involves the phosphorylation of extracellular signal-regulated kinases 1 and 2
in human intestinal epithelial cells infected with L. monocytogenes. The whole process begins
immediately after the entry of the bacteria into the host cell, and consequently delays matu-
ration of vacuoles, prevents acidification, and allows replication of L. monocytogenes [145].
Finally, membrane damage of the phagocytic vacuole allows escape of the bacteria to the
cytosol and further spreading to adjacent host cells [145,146].

After release from the vacuole, Listeria multiplies and then passes through the host
cytosol by polymerizing host actin in an actin assembly-inducing protein (ActA)-dependent
manner [69,95,147]. Polymerization of host cell actin during InlA- and InlB-dependent
entry is mediated by the Actin-related protein (Arp2/3) complex [148]. This complex is
activated by the GTPase-activating protein Rac1, together with the nucleation promoting
factors (NPFs) cortactin, or WAVE [148,149]. After that, the actin comet tails are formed,
which allow bacteria motility in the cytosol and spread to the adjacent cells by the formation
of membrane protrusions that are directly responsible for L. monocytogenes transfer into
neighboring cells [70,95]. In the latter process, internalin C (InlC), the secreted protein
expressed in higher amounts inside infected cells, is involved [95]. It has been shown that
the expression of InlC increases during internalization of bacteria into host cells as a result
of the L. monocytogenes transcription factor PrfA action [71]. InlC interacts directly with the
SH3 domain of Tuba, a 177 kDa cytoskeletal protein that can bind various actin regulatory
proteins and control the structure of apical junctions [71]. The Tuba protein is also involved
in cell junction regulation, cell morphogenesis, and exocytosis [150–153]. Furthermore, InlC
blocks the activation of the NF-kB factor of B lymphocytes, which slows down the response
of the host innate immune system [154].

The novel L. monocytogenes internalins InlP1 and InlP4, as well as internalin-like protein
InlP3, have been identified in strains responsible for a serious listeriosis outbreak in Austria,
Germany, and the Czech Republic [64]. Expression of these proteins was increased under
gastric stress conditions and in bacteria grown in human intestinal epithelial cells in vitro.
Furthermore, InlP1 and InlP4 contributed to the colonization of the spleen and the liver in
orally infected mice [64].

Recently, Ling et al. [65] have shown that another L. monocytogenes internalin, InlF,
contributed to bacteria adhesion and invasion of macrophages, and suppressed the expres-
sion of pro-inflammatory cytokines interleukin (IL)-1b and tumor necrosis factor (TNF-a).
Moreover, InlF contributed to L. monocytogenes colonization in the spleen, liver, and ileum
during the early stage of mouse infection, inducing severe inflammatory injury. This sug-
gests that InlF plays a crucial role in modulating the host immune response, contributing to
survival in macrophages, and colonization in the early stage of infection [65].

Another way to cross the intestinal epithelium for L. monocytogenes involves the
interaction of Listeria adhesion protein (LAP), a 104 kDa enzyme alcohol acetaldehyde
dehydrogenase, with its host cell receptor, the heat shock protein 60 (Hsp60) [62,155].
This LAP receptor is mainly localized at the apical domain of the plasma membrane of
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ileal villi enterocytes [62]. The LAP protein is present on the bacterial cell wall, but it
is also secreted out of the cell by the SecA2 system [156]. It has been shown that the
SecA2-deficient mutant showed a reduced cell-to-cell spread in vitro and it was rapidly
cleared from the host in the murine model in vivo [157]. The secreted form of LAP, in
connection with the cell wall-localized form, promotes full LAP-mediated interaction of
L. monocytogenes with host epithelial cells and translocation of the bacteria through the
epithelium surface [62,63]. The LAP adhesion binding to the heat shock protein 60 (Hsp60)
receptor induces secretion of nuclear-kappa B factor (NF-κB), a transcription factor that
plays a key role in the production of cytokines IL-6 and TNF-α and the activation of
myosin light chain kinase (MLCK) [155,158]. This process promotes cellular redistribution
of occludin, claudin-1, and E-cadherin, and, finally, distortion of the tight and adherent
cell junctions [158]. These changes decrease the strength of the epithelial layer, allowing
translocation of L. monocytogenes from the intestinal lumen to the lamina propria [158]. It
has been suggested that the LAP-Hsp60 adhesion is the one of the most important steps
in crossing the epithelial barrier at the early stage of L. monocytogenes infection (12–48 h),
whereas the InlA-E-cadherin binding pathway is more relevant for subsequent disease
development [43,158].

2.4. Dissemination in the Host

After crossing the intestinal barrier and multiplying in the small intestinal lamina
propria, L. monocytogenes disseminates to the host organs such as the liver, the spleen,
and the mesenteric lymph nodes [44] (Figure 2). Furthermore, the bacteria have the
ability to cross the blood–brain and fetoplacental barriers [3]. The majority of the cells
are trapped in the liver, cleared from the blood circulatory system, and then inactivated
through the host immune system, mainly with professional liver phagocytes (Kupffer
cells), other mononuclear phagocytic cells, neutrophils, dendritic cells, and natural killer
(NK) cells [45]. Furthermore, inactivation of L. monocytogenes by the Kupffer macrophages
induces monocyte recruitment and a type-1 antimicrobial inflammatory response as well
as synthesis of IL-33 by hepatocytes [159]. This process further induces IL-4 expression in
basophils and there is a switch from an inflammatory type-1 to a type-2 response, which
decreases the host inflammation responses and returns the liver to homeostasis [159]. The
remaining live L. monocytogenes bacteria are able to replicate in hepatocytes, and then further
disseminate within the liver using the actin-mediated cell-to-cell spread pathway [21]. In
response to this infection stage, hepatocytes produce chemoattractants that stimulate
neutrophils, which results in the induction of growth of typical multifocal granulomas in
the liver parenchyma [21]. In addition, liver cells can promote monocyte recruitment via
toll-like receptor 2 (TLR2)-dependent secretion of CCL2 and CXCL1 chemokines, which
stimulate formation of micro-abscesses and phagocytosis of the bacteria, finally inhibiting
their spread [160].

In the spleen, L. monocytogenes is mainly engulfed by the macrophages of the marginal
zone and then spread to the red pulp [161]. These macrophages interact with CD8α+

dendritic cells in the transferring of bacteria into T cell zones and the induction of host
immune responses [125].

2.5. Cell-to-Cell Spread

After bacteria-containing finger-like protrusion membrane structures of more than
ten microns long are formed, L. monocytogenes is ready to spread mainly to adjacent cells
and, to a much less extent, to other non-adjacent cells [162–164]. The bacteria present at the
protrusion tips due to the force generated by actin polymerization penetrate the cytoplasm
of adjacent cells and spread inside the host [70,95]. It is not clear how L. monocytogenes is
able to move tens of micrometers to infect non-adjacent host cells, but it is suggested that the
bacteria might form protrusions between host cells by disrupting cell–cell junctions [163].
Direct cell-to-cell transfer of L. monocytogenes allows the pathogen to resist the humoral
and the cytotoxic T cell host immune responses [165]. Then, the recipient cell engulfs the
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protrusions with the bacteria and allows L. monocytogenes to move to the cell cytoplasm [163].
To escape the double-membrane protrusion origin vacuole, the bacterium uses pore-forming
toxins and enzymes, mainly listeriolysin O (LLO) and phospholipases A and B (PlcA and
PlcB) [166]. LLO is called a phagosome-specific lysin because it has a low and limited
activity in the cytosol of host cells and is stable at neutral pH [167,168]. It has been
shown that LLO, together with phosphatidylinositol-specific phospholipase C (PI-PLC),
are secreted in biologically active extracellular vesicles with diameters ranging from 20
to 200 nm [169]. Activation of listeriolysin O depends both on phagosome pH, with an
optimal pH of 5.5, and on GILT, a thiol reductase found inside the phagosome [67,167,170].
The main role of LLO is the destruction of the cell vacuoles to release L. monocytogenes into
the cytoplasm [66]. However, this listeriosin is also important for downregulation of the
host immune system through dephosphorylation of H3 and deacetylation of H4 histones in
the cell [171,172].

3. Infection Sites

L. monocytogenes cells that are still remaining in the circulatory system are rapidly
cleared through the host innate immune system, mainly with neutrophils, dendritic cells,
and macrophages, although this inactivation process is usually less effective than in the
liver [21,173]. Consequently, in immunocompromised persons or persons with a severe
immune-deficient system, bacteremia may develop, and L. monocytogenes disseminates to a
remote organ (e.g., the brain) or crosses the placental barrier in pregnant women [96].

3.1. Listeria in the Brain

How the microorganism enters the brain is still not fully clear, mainly due to limited
in vivo data available [174]. It has been shown so far that L. monocytogenes infiltrates
the brain either directly from blood or the nervous cell fibers connected to peripheral
tissues [34,175] (Figure 2).

Infection of the central nervous system in humans manifests as meningitis and
meningoencephalitis, which are the most frequent clinical presentations observed [176].
Furthermore, brain stem infection (rhombencephalitis) and brain abscessation may de-
velop [34,176]. Meningitis (meningoencephalitis) mainly occurs in persons such as elderly
and immunosuppressed patients [37,177,178]. In these cases, it seems that the bacteria
inducing this form of infection enter the brain via the hematogenous route [34]. In more
detail, L. monocytogenes present free in the blood stream crosses the blood–brain barrier,
recognizing the specific receptors (e.g., E-cadherin, Met) at the surface of the barrier, and
then adheres (to, e.g., InlA, InlB) and passes through it [34]. Alternatively, the bacteria
present intracellularly (e.g., inside leucocytes) directly enter the CNF with these infected
cells [34,179]. It has been also shown that another L. monocytogenes surface-expressed viru-
lence protein factor (Vip) can interact with its Gp96 receptor present at the brain microvessel
surface [72]. In a mouse model, the vip-deleted L. monocytogenes strain was less virulent,
and the number of bacteria in the brain was significantly lower compared to the vip-positive
wild strain [72].

Ghosh et al. [73], using BALB/c mice, demonstrated that one of the internalin family
surface proteins, InlF, plays a role in L. monocytogenes colonization of the brain through
binding to the host cell receptor vimentin. Since vimentin is broadly expressed on the
surface of brain microvascular endothelial cells and astrocytes, it may be important in the
adhesion step of L. monocytogenes during brain invasion [180–182].

Another way of L. monocytogenes brain entry is the mentioned above transportation
of the bacteria inside infected phagocytic cells such as monocytes and dendritic cells or
bone marrow myelomonocytic cells directly to the CNS (so-called Trojan horse mecha-
nism) [183,184]. This process has been shown as interferon-γ-dependent, but chemokine
receptor type 2 (CCR2)-independent [185]. Afterwards, the bacterium is able to infect brain
neurons spreading from these L. monocytogenes-carrying cells [186].
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Recently, Maudet et al. [74] developed a clinically relevant humanized mouse model
of neurolisteriosis using hypervirulent L. monocytogenes strains and showed that monocytes
are necessary and sufficient to induce neuroinvasion. It has been also documented that InlB
possesses a major role in this process, whereas InlA is not involved in neuroinvasion [74].
InlB protects infected monocytes from Fas-mediated cell death by CD8+ T cells in the c-Met,
PI3 kinase, and FLIP-depending manners, finally increasing their lifespan and adhesion to
brain vessels, and thereby favoring the transfer of L. monocytogenes from infected monocytes
to the brain [74].

In the process of brain stem infection (rhombencephalitis), which in humans is identi-
fied in up to 24% of patients, L. monocytogenes enters the organ mainly via neural retrograde
transport [37,187]. It has been suggested that the bacteria may enter the host during mu-
cosal injury of the oropharyngeal and nasal cavities, lips, conjunctiva, or gut, i.e., as a
result of surgical procedures [188,189]. It seems that the trigeminal nerve pathway repre-
sents the most efficient way by which L. monocytogenes invades the brain stem from the
oropharynx [190]. However, there are rather few experimental reproductions of typical
rhombencephalitis lesions in animals such as sheep and goats [7,191,192].

Once in the brainstem, L. monocytogenes spreads further to brain center and caudally
to the spinal cord along axonal connections of trigeminal nerve branches and other cranial
nerves [187]. The way in which trigeminal and other peripheral nerves become infected
prior to further dissemination to the CNS remains unknown [34]. It has been suggested,
based on the studies with ruminants, that in this process an InlA-dependent mechanism of
invasion of cranial nerves plays a role [44]. In this animal model, L. monocytogenes adheres to
E-cadherin expressing oral epithelial cells or myelinating Schwann cells, and subsequently
spreads to neighboring axons [193]. Furthermore, the source of axonal infection may also
be phagocytes by ActA-dependent bacterial cell-to-cell spread [186]. Some experiments
in mice have also shown the role of phospholipase B (PlcB) in the dissemination of L.
monocytogenes bacteria from peripheral macrophages to the trigeminal nerve [190].

Brain infection with L. monocytogenes causes meningitis or meningoencephalitis, with
headache, fever, and neck stiffness [28,174,194]. These signs of the disease cover the ma-
jority of CNS infections by L. monocytogenes among people (70–97%) [37,177]. There are
predisposing factors such as immunosuppression, age over 50 years, malignancy, or dia-
betes [177]. In some patients (below 10%, mostly immunocompromised), macroscopic brain
abscesses located in subcortical areas, thalamus, pons, or medulla have been observed [195].

Further development of the CNS infections results in rhombencephalitis, which oc-
curs in up to 24% of listeriosis patients and is characterized by progressive brain stem
dysfunction [34,37,176,196]. During the first days, unspecific symptoms are developed
such as headache, malaise, nausea, and vomiting. After that, asymmetrical cranial nerve
deficits, cerebellar signs, hemiparesis, and hemisensory defects may develop, frequently
together with meningeal symptoms [34]. Interestingly, rhombencephalitis is mainly seen
in healthy persons without any other diseases or in patients with an impaired immune
system [34,196–198].

3.2. Listeria in Fetus

L. monocytogenes is also able to cross the placental barrier and infect the fetus in
pregnant women, resulting in still-birth or frequent lethal neonatal infections [20,199,200]
(Figure 2). The whole entry process is not fully clarified, but it seems that bacteria may
cross the endothelium of the maternal blood vessels and then pass into the fetal circula-
tory system of the placental villi [21,96]. Infection of the fetus may be achieved in two
ways: either as a cell-to-cell spread from maternal infected phagocytes, or via infection of
trophoblasts with L. monocytogenes that are circulating in the blood [96]. One of the most
important elements in the barrier between the mother’s blood and her fetus are cytotro-
phoblasts, the inner layer of villous trophoblasts, which are considered to be stem cells for
the syncytiotrophoblast, which is in direct contact with maternal blood in the villous human
placenta [201,202]. Furthermore, the extravillous cytotrophoblasts anchor the villous tree
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in the decidua [201]. Using immunohistochemical analysis, it has been shown in vitro
that L. monocytogenes is able to infect placentas obtained from women with listeriosis [203].
Furthermore, most infections are noted late in the pregnancy, suggesting that the syncy-
tiotrophoblast may be the main entry point of the bacteria in the placenta [178]. Broad
studies have shown that L. monocytogenes, after passing beyond the barrier of invasive
extravillous trophoblasts that inhibits the vacuolar escape of the bacterium, colonizes the
decidua of the endometrium [204]. Several investigations also demonstrated that infection
of the placenta with L. monocytogenes is dependent on the number and virulence potential
of circulating bacteria that will resist the protective barrier of extravillous cytotrophoblasts
and syncytiotrophoblasts [205–208].

The cellular mechanism of syncytiotrophoblast infection with L. monocytogenes is differ-
ent from the invasion of enterocytes because interactions of InlA and InlB with their respec-
tive receptors, E-cadherin and c-Met, are necessary for efficient gut tissue invasion [209].
However, unlike enterocytes, syncytiotrophoblasts have no intrinsic phosphoinositide 3-
kinase (PI3-K) activity required for bacteria internalization [112,210]. Binding of internalin
B to c-Met induces PI3-K activity that, in turn, phosphorylates the plasma membrane lipid
second messenger phosphoinositide-4,5-bisphosphate (PIP2) into phosphoinositide-3,4,5-
trisphosphate (PIP3), which is essential for L. monocytogenes internalization [211]. On the
other hand, using the gerbil animal model, it was demonstrated that bacterial mutants
lacking the ability to express InlA and InlB can still infect the fetus, which suggests that
in the placental invasion process, at least partially, maternal circulating phagocytes are
involved [112].

Faralla et al. identified the inlP (lmo2470) gene encoding one of the internalin family
proteins, a secreted internalin P (InlP) [75]. This internalin is conserved in virulent L. mono-
cytogenes, but is absent in strains that are nonpathogenic for humans. Furthermore, it has a
strong tropism for the placenta and studies with guinea pig and mice models demonstrated
that deletion of the inlP gene provided a 1000-fold defect in placental colonization [75].
It has been shown that InlP binds to the host cell cytoplasmic protein afadin, a protein
associated with cell–cell junctions [212]. The InlP–afadin interaction specifically enhances
L. monocytogenes transcytosis through the basal face of polarized epithelial cells, resulting
in placenta infection [213].

Pregnant women infected with L. monocytogenes may be asymptomatic or show un-
specific flu-like symptoms, but clinical manifestations such as meningoencephalitis or
endocarditis have not been often reported [29,214]. However, the pregnancy-associated
infection usually presents in the fetus with septicemia, pneumonia, or meningitis, and
often finalizing with abortion (20–30% cases), giving birth to a still child, or premature
birth [214,215]. Some studies demonstrated that not all listeriosis cases of the mothers dur-
ing pregnancy are associated with infection of the fetus, and ca. 30% of pregnancy-related
cases do not result in any of the described above complications [37,216–218].

The neonatal form of listeriosis is usually the result of vertical transmission of L.
monocytogenes from mother to fetus, either by ingestion of infected amniotic fluid during
intrauterine life, transplacentally from the maternal circulation or by ascending colonization
from the infected vagina, or, rarely, by horizontal infection after birth [214,219]. In the USA,
neonatal listeriosis has been identified in approximately 8.6/100,000 live births, with a high
(20–60%) mortality rate [214,220].

Neonatal listeriosis may manifest in two forms, depending on the time of development
of symptoms after birth, e.g., as early and late onset [219,221]. The early form develops at
days 1–6 of life, and it is usually associated with previous mild maternal symptoms [219].
In newborns, in most cases septicemia develops (80–81% of children), and in some of them
respiratory disorders or pneumonia, and sometimes meningitis, are identified [222]. Addi-
tionally, abscesses and granulomas arise and disseminate in multiple organs (e.g., liver) as
well as severe neurological complications in the surviving neonates may develop [219,223].
The mortality rate of early neonate listeriosis is estimated at ca. 20% [219].
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The second form of neonatal listeriosis (late onset L. monocytogenes infection) develops
in infants at ages 5 to 20 days who were born to asymptomatic mothers with usually an
uneventful, carried-to-term pregnancy [214]. Such newborns have no disease symptoms at
birth, but after a few days meningitis develops, sometimes connected with fever, colitis,
and diarrhea [45,214,217,224]. The neonates are usually infected through contact with the L.
monocytogenes-contaminated birth canal, maternal feces, or the home environment [45,224].
The fatality rate of this form of neonatal listeriosis is lower than during the early onset
disease, and is estimated at ca. 10%. However, often various severe complications in
surviving infants such as growth retardation, intellectual disability, and blindness are
observed [32].

4. Treatment of Listeriosis

L. monocytogenes is susceptible to many different antimicrobials that are used for gram-
positive bacteria [225,226]. These include β-lactams, gentamicin, erythromycin, tetracycline,
rifampicin, and vancomycin. On the other hand, L. monocytogenes is naturally resistant
to cephalosporins, nalidixic acid, and polymyxin E [225]. Furthermore, most isolates are
not susceptible to fluoroquinolones and cephalosporins of the third (e.g., cefotaxime) and
fourth (cefepime) generations, nor to fosfomycin, oxacillin, and lincosamides [227]. High
resistance to tetracyclines has been also reported in a few strains [225,228]. Antimicrobial
resistance/susceptibility of L. monocytogenes strains varies widely and depends on sampling
sites, time of sampling, source of isolates, and geographical origin.

In 1988, the first multiresistant (i.e., showing resistance to three or more classes of
antimicrobials) L. monocytogenes strain of human origin was described in France [229]. It
displayed resistance to chloramphenicol, erythromycin, streptomycin, and tetracycline. The
genes responsible for resistance to these antibiotics were located on a 37 kb plasmid. Since
then, several other L. monocytogenes strains with antimicrobial multiresistance patterns have
been isolated from different clinical, food, and environmental origins [228,230–233].

Based on L. monocytogenes in vitro antimicrobial resistance results, treatment of severe
listeriosis with β-lactams (penicillin or ampicillin) alone or combined with an aminogly-
coside (e.g., kanamycin or gentamicin) is recommended [230,234]. Additionally, in cases
of reduced sensitivity or resistance of the strains to β-lactams, other antimicrobial sub-
stances that are effective against gram-positive bacteria may be used, e.g., tetracyclines,
erythromycin, chloramphenicol, vancomycin, and trimethoprim/sulfamethoxazole [234].
The latter antimicrobials are recommended for patients with an allergy to penicillin, whereas
persons with bacteremia due to L. monocytogenes may be treated with vancomycin [234].
Furthermore, erythromycin can be used in patients with an allergy to ampicillin and/or
gentamicin [214]. During pregnancy of L. monocytogenes-infected women, ampicillin or
erythromycin intravenously or amoxicillin orally are used for at least 14 days, or even until
delivery [224]. When the woman does not tolerate penicillin or amoxicillin, trimethoprim
with sulfamethoxazole are the drugs of choice [224]. However, trimethoprim can damage
the fetus in the early stages of pregnancy, including its heart and nervous system; therefore,
patients with penicillin intolerance expecting a baby can be treated with erythromycin that
is safe for fetus [235,236].

An increasing resistance of L. monocytogenes against antimicrobials, including antibi-
otics, led to the search for alternative therapies [237]. One of them is the application of
bacteriocins, which are natural peptides produced by various bacteria [238,239]. Several
bacteriocins are stable in gastrointestinal conditions, possess a low toxicity, and show a
significant effect against pathogenic bacteria, including antibiotic-resistant strains [240,241].
It was shown that nisin (produced by Lactococcus lactis) and pediocin (secreted by Pediococ-
cus acidilactici), demonstrated inhibitory activity against L. monocytogenes both in vitro and
in vivo [242,243].

Another group of antibacterial substances that are promising alternatives to antibiotics
are natural products of plant origin that possess different mechanisms of action directed to-
wards increasing membrane permeability, decreasing its integrity, or disruption of bacterial
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efflux pumps [244]. Among them are terpenoids such as limonene and carvacrol, which
has been shown to be effective against L. monocytogenes [245,246].

The efficacy of other phytochemicals such as trans-cinnamaldehyde, carvacrol, and thy-
mol in reducing L. monocytogenes virulence was demonstrated using the Galleria mellonella
invertebrate model [247].

Although all these plant products demonstrated antibacterial activity, their application
in treatment of listeriosis requires further mammalian and clinical studies [244].

5. Prevention of Listeriosis

Currently, there is no effective vaccine against listeriosis, although some experiments
have shown that cell-based and subunit-based immunoprepartions lacking cytotoxicity
and pathogenicity may be highly protective [248–250]. Furthermore, L. monocytogenes is
often applied as a vaccine vector for protection against other pathogens as well as in cancer
therapy [251,252]. Therefore, prevention of L. monocytogenes infection is the most important
way to control the disease, since the bacterium is widely distributed in the environment,
including in food-production facilities [3,253]. It has been revealed that L. monocytogenes
is able to survive there for a long time due to inadequate cleaning and disinfection of
food production equipment or insufficient supervision of employees [17]. Most sporadic
listeriosis cases and large outbreaks were due to the consumption of contaminated food
with these bacteria, especially ready-to-eat food of animal origin [17]. Listeriosis is a typical
zoonotic food-borne disease, although it may be also transmitted through direct contact
with infected animals or contaminated environments [21,22].

There are studies on the prevention of L. monocytogenes infection by the use of pro-
biotics [254–258]. Probiotic bacteria, e.g., lactobacilli, have shown positive effects in mice
by producing bacteriocin or by changing the host gene expression or L. monocytogenes
transcriptome [259]. Drolia et al. demonstrated that Lactobacillus casei expressing Liste-
ria adhesion protein (LAP) colonized the intestine, adhered to the heat shock protein 60
(Hsp60) receptor, and excluded L. monocytogenes from intestinal colonization and systemic
dissemination [257]. Furthermore, such probiotic bacteria were also able to prevent feto-
placental transmission of the pathogen in a pregnant guinea pig model [258]. Another
study of Mathipa et al. showed that in L. casei expressing L. monocytogenes, InlA and InlB
inhibited adhesion, invasion, and translocation of L. monocytogenes through enterocyte-
like Caco-2 cells [256]. All these results suggest that molecularly recombinant probiotic
bacteria possessing Listeria virulence traits may be a potential approach for prevention of
human listeriosis.

The key aspect in prevention of listeriosis is proper food preparation, handling, and
storage to avoid its contamination or cross-contamination and then consumption by hu-
mans [260–262]. According to the European Union food law regulation, the criteria for
L. monocytogenes varies on the food category and intended consumer population [263].
Generally, there is zero tolerance for ready-to-eat foods for infants and for food of special
medical purposes, and up to 100 cfu/g for other ready-to-eat foods.

Crucial factors for listeriosis prevention cover rapid and specific detection of L. mono-
cytogenes in food with classical or alternative methods and determination of the infection
sources [264]. L. monocytogenes is not only able to persist, but also multiply in a wide range
of adverse conditions present in food production environments and create biofilms on
various surfaces. All these features make it difficult to eliminate the bacteria and enable
them to survive there for a long time [265]. Therefore, efficient methods of removal of the
pathogen from the food industry environment, which are fundamental for ensuring the
safety of food production, should be developed and applied [266].

6. Conclusions

Listeriosis, although it is a rather uncommon disease compared to many other food-
borne illnesses, is one of the most severe infections due to its high frequency of deaths
of approximately 20–30%. The disease is caused by L. monocytogenes, the ubiquitous
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bacterium present in soil, environments, and in food products, that has the ability to
survive and grow under unfavorable conditions often found in food production plants.
Furthermore, it expresses several factors ensuring survival in unfavorable gastrointestinal
conditions. It is also an unusual pathogen because it is the intracellular microorganism
that causes various types of the disease characterized as septicemia and encephalitis. L.
monocytogenes has also placental tropism resulting in the infection of the fetal tissues
and finally the death of the child. The bacterium possesses several virulence factors,
responsible for epithelial cell adhesion, cell-to-cell spread, intracellular multiplication,
and crossing of natural host barriers. Among them are internalins, including the recently
described InlF. It is well known that invasion of the host non-phagocytic cells is critical in
the pathogenesis of listeriosis. Various bacterial surface molecules involved in the invasion
of host cells have been identified and showed that L. monocytogenes has developed complex
strategies of affecting many different tissues and organs. However, there are also gaps in
the understanding of specific interactions between host factors and the microorganism on
its pathogenicity. Thus, further studies towards L. monocytogenes investigation of molecular
pathogenic potential and mechanisms of the infection are needed.
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