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Abstract: Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep
and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes
associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The
presence of animals with relatively high and low proviral load suggests that some host factors are
involved in the control of virus replication. To better understand the role of the genes involved in the
host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole
gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and
uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes
(DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between
HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were
found to be significantly enriched in several gene ontology (GO) terms, including an integral component
of membrane, extracellular region, response to growth factor, inflammatory and innate immune response,
transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-
dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results
also demonstrated significant deregulation of selected pathways in response to viral infection. The
presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the
toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-
cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It
is worth mentioning that the most predominant in all pathways were genes represented by toll-like
receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL
and HPL groups were found to have significantly enriched regulation of signaling receptor activity,
the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex
assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B
and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated
phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR)
signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV
proviral load induced altered expression of genes related to different biological processes such as
immune response, inflammation, cell locomotion, and cytokine production. These findings provide
significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be
useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral
concentration that may lead to a reduction in the spread of the virus.
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1. Introduction

The maedi visna virus (MVV) and the caprine arthritis encephalitis virus (CAEV)
belong to the group called small ruminant lentiviruses (SRLV) within the Retroviridae family.
Molecular epidemiology studies revealed that both viruses represent a broad spectrum of
genetic variants that can infect sheep and goats. To date, four main genotypes have been
described, but molecular information on new subtypes is continuously updated, showing
a high genetic and antigenic heterogeneity [1]. Infections with SRLV, which are spread
worldwide, cause multi-organ failure usually over a long period of time and can lead
to severe diseases such as pneumonia, mastitis, arthritis, wasting, and encephalitis [2].
Moreover, they contribute to economic losses in small ruminant production and affect
animal welfare deterioration [3,4].

There is no effective vaccine or treatment preventing animals from SRLV infection.
Several practices for controlling or preventing SRLV infection have been developed, such as
serological testing with culling or segregation of infected animals, replacement of infected
animals with offspring from seronegative mothers, or artificial rearing of newborn animals
separated from the infected mothers immediately after birth [5,6]. These practices can be
effective when carefully designed and applied continuously to eradicate the progression
of the infection [6–10]. However, such an approach is often costly and time-consuming.
The high genetic variability of SRLV and the absence of sensitive diagnostic tests that are
able to detect all strains are additional challenges reducing the effective implementation of
eradication programs.

The dynamics of the host immune response to SRLV infection are still not fully under-
stood. Several attempts to identify host factors associated with resistance to SRLV infections
have been made, and some loci were identified [11–15]. In particular TMEM154 gene (trans-
membrane protein 154), TMEM38A (transmembrane protein 38A), CCR5 (chemokine(C-C
motif) receptor type 5), MHC (major histocompatibility complex), ZNF389 (zinc-finger pro-
tein 389), TLRs (toll-like receptors), APOBEC3 (apolipoprotein B editing complex 3), TRIM5
(tripartite motif protein 5 alpha), Tetherin/BST-2 (bone marrow stromal cell antigen 2) and
other cytokines (interleukin 2 (IL2), interleukin 2 receptor (IL2R), tumor necrosis factor
alfa (TNF-α), interleukin 4 (IL4), interleukin 8 (IL8), interleukin 6 (IL6), interleukin 16
(IL-16), interferon gamma (IFN-γ), transforming growth factor beta (TGF-β1), monocyte
chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor
(GM-CSF)) and chemokine ligands (C-C motif ligand 2 (CCL2), C-C motif ligand 5 (CCL5),
C-C motif ligand 20 (CCL20)) seem to have an important role in the SRLV infection suscep-
tibility/resistance [12,13,15–33]. However, additional studies are still necessary to learn
more about genes involved in SRLV immunity.

In many persistent viral infections, viral load is reported to estimate the likelihood of
pathogenesis and disease progression. For retroviruses, including lentiviruses, in which
genomes are integrated with the host genome, proviral load (PL) is a risk factor determining
disease prediction [34]. It was shown that animals with high PL showed more tissue lesion
severity, indicating that proviral concentration is positively correlated with the presence
and severity of clinical disease symptoms [35,36]. Elimination of animals predisposed to
high PL can limit the outcome of clinical signs and spread of the virus since these animals
are also highly efficient in shedding the virus [37]. On the contrary, some studies indicated
potential restriction in low PL carriers and referred to them as long-term non-progressors.
These animals showed competent antibody response in the absence of productive virus
replication leading to minimizing the spread of the virus within the flock [38]. Consistent
with this, approaching genetics factors associated with low PL in animals infected with
SRLV could be used to control SRLV infection, especially in flocks with a high level
of seroprevalence.

In this study, RNA sequencing (RNA-seq) was used to identify genes associated with
high (HPL) and low (LPL) proviral load in goats of Carpathian breed naturally infected
with SRLV. The results provide unique insights for further exploration and understand-
ing patterns of the host responses to SRLV infection in goats. A deep understanding of
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transcriptome profile changes may provide additional information on the contribution of
specific genes responsible for the course of infection with SRLV. Additionally, these data
can be useful to develop strategies against SRLV infection by elimination and/or selection
of animals with reduced SRLV provirus concentration, which may lead to limitation of
viral spread and can improve the welfare of animals and prolong their life.

2. Methods
2.1. Animals and Blood Sample Collection

Whole blood was taken from 27 adult goats by jugular venipuncture and stabilized
in ethylenediaminetetraacetic acid (EDTA) and Tempus blood RNA tubes. Goats repre-
sented the Carpathian breed, and they were owned by the National Research Institute of
Animal Production in Krakow. All goats were healthy and maintained in one flock in the
same environment. This involved being housed indoors in sheds, aside from during the
grazing season (April–November), where they spent daily hours in pastures outdoors. It
also involved the feeding conditions (summer feeding based on pasture or green fodder
and winter feeding consisting mainly of hay and oats). Serological status of animals for
SRLV infection was confirmed by enzyme-linked immunosorbent assay (ELISA) (ID Screen
MVV/CAEV Indirect Screening test, IDVet, Grabels, France) according to the manufac-
turer’s recommendations. Blood samples were collected from all animals on the same day.
At the time when blood was taken, none of the goats exhibited any clinical signs of the
disease. All procedures associated with animal handling and treatments were approved
(no 37/2016) by the Local Ethical Committee on Animal Testing at the University of Life
Sciences in Lublin (Poland).

2.2. Proviral Load Quantification

DNA was extracted from peripheral blood leukocytes (PBLs), and proviral DNA
was quantified by the real-time polymerase chain reaction (PCR) using Rotor-Gene Q
Series ver. 2.0.3 (Qiagen, Hilden, Germany) with primers and probe specifically designed
for SRLV A5 subtype, which circulation in this flock was previously confirmed [39]. Se-
quences of forward and reverse primers and probe were CA5F (5′ TGGGAGTAGGA-
CAAACAAATCA 3′), CA5R (5′ TGACATAT GCCTTACTGCTCTC 3′) and CA5P (5′ 6-
FAM-TCACCCATTGTAGGCATAGCTGCC-BHQ-1 3′), respectively. A reference plasmid
encompassing the target gag region was generated by the cloning of a 625 bp fragment
into pDrive plasmid used to generate a standard curve based on 10-fold serial dilutions
of plasmid DNA from 108 to 10. Amplification was performed in a total volume of 20 µL,
according to the following cycling conditions: initial incubation and polymerase activation
at 95 ◦C for 15 min and followed by 45 cycles of 94 ◦C for 60 s and 60 ◦C for 60 s. The
reaction mixture for each PCR test contained 10 µL 2× QuantiTect Multiplex NoROX PCR
buffer (Qiagen, Hilden, Germany), 400 nM of each of the primers, 200 nM of the specific
probe, 5 µL of extracted genomic DNA. A non-template control (diethylpyrocarbonate
(DEPC) H2O) was included in each run. All samples were tested in duplicate, and the
results were expressed as a mean copy number of provirus per 500 ng of genomic DNA of
each goat. Then, these data were used for further statistical analysis, thereby allowing the
identification of goats with a high (HPL) and low (LPL) proviral load.

2.3. Transcriptome Sequencing and Data Analysis

The total RNA was isolated from the whole blood of goats using MagMAX™ for
Stabilized Blood Tubes RNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA ),
according to the protocol. The possible RNA contamination with DNA was removed using
TURBO DNase™ (Thermo Fisher Scientific, Waltham, MA, USA). The quality and quantity
of obtained RNA were checked using the Nanodrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA) and TapeStation 2200 System (Agilent, Santa Clara, CA,
USA) using Agilent RNA ScreenTape (Agilent, Santa Clara, CA, USA). The samples with
an RIN (RNA integrity number) value above 8 were used for further analysis. The cDNA
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libraries were prepared from 300 ng of total RNA with the use of the TruSeq RNA Kit v2
kit protocol (Illumina, San Diego, CA, USA). Each library was ligated with adaptors with
different index barcodes. The quality and quantity of libraries were assessed using Qubit
2.0 fluorometer (Invitrogen, Carlsbad, CA, USA ) and TapeStation 2200 (Agilent, Santa
Clara, CA, USA) with D1000 ScreenTape (Agilent, Santa Clara, CA, USA). Libraries were
pooled and sequenced by synthesis, using HiSeq High-Output v4-SR (Illumina, San Diego,
CA, USA) into 50 single-end cycles, according to the protocol. The quality of the reads
was assessed with FastQC software [40]. Then, we used Flexbar software [41] to remove
adapters, reads shorter than 35 base pairs, and those with a phred quality score lower
than 30. Processed reads were mapped to the goat reference genome Capra hircus ARS1
(GCA_001704415.1) with Tophat software [42] on default parameters. Next, the mapped
reads were counted into Ensembl GTF version 97 annotation intervals using HTSeq-count
software [43]. Differential expressed genes (DEG) were estimated using DESeq2 soft-
ware [44] with default parameters. Genes with p-adjusted < 0.05 (Benjamini–Hochberg
p-value adjustment) and fold change >1.3 were regarded as differentially expressed and
included in further annotation analysis.

2.4. GO Enrichment and Pathways Analysis

The gene ontology analysis (GO) and pathways analyses were performed on all
significant differentially expressed genes (DEGs) sets. The gene set enrichment analy-
sis (GSEA) was performed with the use of WebGestalt software with Fisher’s exact test
(http://webgestalt.org/ accessed on 31 July 2021). For pathway functional analysis, David
software v6.8 (Fisher Exact test) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) with KEGG mapper search pathway tools were applied. The significantly enriched
pathways were identified based on the p-values obtained from a Fisher exact test [45]. The
latest version of the Capra hircus ARS1 (GCF_001704415.1) reference genome was used.

2.5. Quantitative Polymerase Chain Reaction (qPCR) Analysis

Validation of the RNA-seq results was carried out using the real-time PCR method for
nine DEGs (Supplementary Materials Table S1), selected based on their important function
in viral infection and/or previous reports confirming their association with proviral con-
centration. The qPCR was performed for the validation of RNA-seq results of all samples
analyzed using the RNA-seq method (for validation), as well as for all samples tested by
qPCR, which was tasked with the estimation of the correlation between PL (SRLV copy
number) and gene expression levels (for a correlation with SRLV copy number). The cDNA
was prepared from 250 ng of total RNA using a high-capacity RNA-to-cDNA Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to protocol. The transcript level of selected
genes was estimated on QuantStudio 7 Flex (Applied Biosystems, Thermo Fisher Scientific,
Waltham, MA, USA), and for each gene, the reaction was carried out in three replications
using Sensitive RT HS-PCR Mix EvaGreen (A&A Biotechnology, Gdynia, Poland). The ex-
pression was calculated using the delta-delta CT method according to Pfaff [46] and based
on HPRT1 and ACTB reference controls [47]. The comparison between next-generation
sequencing (NGS) data (RNA-seq) and relative quantity obtained by real-time PCR method
was performed using Spearman correlation with the use of R software [48].

2.6. Statistical Analysis

To classify the animals into HPL and LPL groups, a copy number calculated by qPCR
per each animal was used as a potential cut-off value, and a Box–Cox transformation was
used to achieve normal distribution. The t-Student test was employed to determine the
significance of the differences between the two potential groups of animals. Finally, the
cut-off value was chosen based on the lowest p-value to distinguish between the HPL and
LPL groups, which was additionally confirmed by the Welch test (p < 0.0001).

The phenotypic and physiological variables between HPL and LPL goats were an-
alyzed using TIBCO Software Inc. Statistica (Data Analysis Software System, Palo Alto,

http://webgestalt.org/
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CA, USA), version 13 (2017). The association between physiological differences (stage of
lactation, mastitis and other diseases, abortion) between HPL and LPL goats were tested by
a chi-square test with appropriate correction. The variables included age, parity number,
body weight, and milk yield (kg) and were analyzed with Pearson correlation. All variables
were also tested by logistic regression models. The normality of the distribution and the
homogeneity of variance was tested by Shapiro–Wilk and Brown–Forsyth tests, respectively.
Differences were considered significant when p > 0.05.

3. Results
3.1. Classification of Goats on HPL and LPL

A total of 24 animals from the flock tested in this study were seropositive by ELISA
and positive to quantitative polymerase chain reaction (qPCR), whereby confirming the
infection of SRLV. Three goats were negative in both ELISA and qPCR. The average number
of proviral copies varied from 1 to 106 per 500 ng of genomic DNA, and these values
showed skewed distribution with a relatively limited number of animals with a high
concentration of provirus. Animals were classified into HPL (mean ± SD; 82.39 ± 13.14)
and LPL group (mean ± SD; 14.31 ± 14.23) (Figure 1).
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Figure 1. Proviral load distribution among goats with low (LPL) and high (HPL) proviral load.
HPL—high proviral load, LPL—low proviral load.

In addition, the statistical analyses of the phenotypic and physiological differences
between HPL and LPL goats were performed. Variables analyzed included age, parity
number, body weight, milk yield, stage of lactation, disease occurrence (including mastitis),
and abortion. A moderate correlation between proviral load and age (r = 0.35, p = 0.035),
as well as parity number (r = 0.38, p = 0.024), was observed; however, no significant dif-
ferences between HPL and LPL goats were noted when other variables were analyzed.
Finally, eight goats (four goats with HPL and four goats with LPL) that were phenotypi-
cally and physiologically the most homogeneous were then carefully selected for whole
blood transcriptome analysis. All these animals were female, unrelated within biologi-
cal groups, clinically healthy, and multiparous after parturition. Their average age was
7.25 ± 1.98 years, the average body weight was 45.3 ± 5.15 kg, and they produced on
average 266.6 ± 96.0 kg of milk per year.

Moreover, partial (gag and LTR) sequences of the SRLV genome were analyzed, and
no significant mutations/differences between sequences obtained from HPL and LPL goats
that could alter proviral load were observed.
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3.2. RNA-seq Data
3.2.1. Transcriptome Quantification

Transcriptome analysis was performed using whole blood taken from 11 selected
goats. These animals included four goats with high (HPL group) and four goats with
low (LPL group) SRLV proviral load, as well as three uninfected goats (control group).
After next-generation sequencing (NGS) and data filtration, the average number of reads
obtained per sample was about 34.3 mln. On average, 83.8% of reads were mapped to the
reference Capra hircus genome (GCA_001704415.1) (Supplementary Materials Table S2).
Furthermore, the principal component analysis (PCA) showed that the analyzed groups
of animals formed distinct clusters, which confirmed the presence of two groups of goats
with high and low proviral concentrations (Supplementary Materials Figure S1).

3.2.2. DEGs Analysis

The whole blood transcriptome sequencing using the NGS approach allowed the
identification of 1130 DEGs between control and LPL groups, 411 between control and
HPL groups, and 1434 significant DEGs between HPL and LPL groups (Figure 2).
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Figure 2. Venn diagram showing the number of overlapping DEGs between C vs. LPL, C vs. HPL,
and LPL vs. HPL.

When the set of DEGs between uninfected and both HPL and LPL goats was compared,
the 1046 genes were detected. Among this DEGs panel, 408 genes were identified as
downregulated in both HPL and LPL groups, while 638 genes were upregulated. This
gene set was used for subsequent analysis as being potentially associated with immune
response to SRLV infection. Among all 1434 DEGs identified between LPL and HPL goats,
571 were upregulated and 863 downregulated.

In the panel of 1046 DEGs differentiated uninfected animals from those with SRLV
proviral load, the genes with the highest expression changes and downregulated in animals
with proviral load were KITLG (KIT ligand—mast cell growth factor) 256-fold change;
HHPI (hedgehog interacting protein) 234-fold change; SLC17A6 (vesicular glutamate
transporter 2) 222-fold change and P2RX2 (purinergic receptor P2X 2) 186-fold change. In
turn, the most upregulated genes in the blood of goats with proviral load were PDGFRB
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(platelet-derived growth factor receptor beta) 76-fold change; TUBA4A (tubulin alpha 4a)
67-fold change; TNNI3 (troponin I3, cardiac type) 66 FC and TMEM176B (transmembrane
protein 176B) 59FC.

Moreover, the following family of genes in which expression was deregulated in
response to SRLV infection were identified: the zinc-finger gene family (ZNF; 8 genes); a
transmembrane protein (TMEM; 10 genes); the solute carrier family genes (SLC; 14 genes);
signaling protein (11 genes), toll-like receptors (TLR; 4 genes), and tubulins (TUBB; 4 genes).

When the groups of LPL vs. HPL were compared, the highest differences in gene
expressions were detected for downregulated genes for which the decrease in transcript-
level abundance reached up to 419-fold change (FC) for solute carrier family 22 member 1
(SLC22A1) gene. The most significant deregulated genes showing the highest FC in gene
expression between analyzed groups are presented in Figure 3 and Supplementary Ma-
terials Table S3. The group of genes for which expression was deregulated in response
to the provirus concentration were: the zinc-finger gene family (ZNF; 23 genes); a trans-
membrane protein (TMEM; 16 genes); the solute carrier family genes (SLC; 22 genes); the
NADH: ubiquinone oxidoreductase supernumerary subunits (NDUF) genes (20 genes);
ATP synthase genes (15 genes); interleukin and interleukin receptors (12 genes); the sorting
nexin family (SNX; 5 genes) and the translocase of inner mitochondrial membrane family
(TIMM, 5 genes).
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proviral load: a8, a31, a32, and a33; Uninfected animals: c44, c45, and c46.
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3.3. Gene Ontology and Pathways Annotation
3.3.1. DEGs Detected between Control Group and Groups with Proviral Load

The gene ontology analysis showed the significant enrichment of several GO terms
(Table 1). The most overrepresented were integral components of the membrane, which
involved 13 DEGs, 6 extracellular region genes, and 5 response to growth factor genes.
Other detected GO terms related to inflammation and innate immunity were represented
by four genes belonging to the toll-like receptors family, TLR2, TLR4, TLR8, and TLR7,
which were all significantly upregulated in the infected goats (Figure 4).

Our results also showed significant deregulation of selected pathways in response
to viral infection (Table 2). The presence of SRLV proviral load in blood cells resulted
in modification of expression in genes belonging to toll-like receptor signaling pathway
(FDR > 0.05); TNF signaling pathway (FDR > 0.01); Cytokine-cytokine receptor interaction
(FDR > 0.04) and phagosome (FDR > 0.02) (Figure 5). It is worth mentioning that the
most predominant genes in all pathways were the genes represented by toll-like receptors,
tubulins, growth factors, as well as interferon gamma receptors. The highest number of
downregulated genes were detected within the Ras signaling pathway. These pathways
allowed the identification of PLA2G1B (phospholipase A2 group IB) and KITLG (KIT ligand)
DEGs, and both were considered as strongly related to viral infection.

Table 1. The significant GO terms enrichment between uninfected and infected goats.

GO Accession Number Number of Genes FDR Identified Genes

MyD88-dependent toll-like
receptor signaling pathway GO: 0002755 4 0.019 TLR2, TLR4, TLR8, TLR7

Response to growth factor GO: 0070848 5 0.050 HHIP, BMPR1B, ADAMTS3,
PDGFRB, BMP6

Regulation of cytokine secretion GO: 0001817 3 0.050 TLR2, TLR4, TLR8
Inflammatory response GO: 0006954 4 0.050 TLR2, TLR4, TLR8, TLR7

Transmembrane signaling
receptor activity GO: 0004888 3 0.010 TLR2, TLR4, TLR7

Innate immune response GO: 0045087 3 0.010 TLR2, TLR4, TLR8

Extracellular region GO: 0045087 6 0.010 KITLG, BMP6, INHBB, INSL3,
IGFBP1, IGFBP3

Integral component of
membrane GO: 0016021 13 0.010

ATP6, KITLG, ND3, ND4,
BMPR1B, CALCRL, COX1,

DGAT2, SLC11A1, SCD, TLR2,
TLR8, TLR7

FDR—false discovery rate (p-value adjusted), GO—gene ontology.

Table 2. Significantly overrepresented pathways involved genes associated with SRLV infection.

Biological
Pathways

Number of Genes
Upregulated Upregulated Genes Number of Genes

Downregulated
Downregulated

Genes FDR

Toll-like receptor
signaling pathway 6 LY96, PIK3R5, TLR2,

TLR4, TLR7, TLR8 1 MAPK12 0.050

Rheumatoid
arthritis 4 ATP6V1A, TLR2,

TLR4, TGFB2 0 - 0.010

Ras signaling
pathway 5 GAB2, EFNA4, KDR,

PIK3R5, PDGFRB 5
KITLG, ANGPT2,
PAK6, PLA2G1B,

RGL1
0.010

PI3K-Akt signaling
pathway 8

CSF3R, EFNA4, GYS1,
KDR, PIK3R5, PDGFRB,

TLR2, TLR4
4 KITLG, ANGPT2,

COMP, COL1A1 0.010

TNF signaling
pathway 3 TNFRSF1A, PIK3R5,

SOCS3 1 MAPK12 0.010
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Table 2. Cont.

Biological
Pathways

Number of Genes
Upregulated Upregulated Genes Number of Genes

Downregulated
Downregulated

Genes FDR

Phagosome 9

ATP6V1A, RAB7B,
LAMP2, MSR1,

NCF1, TLR2, TLR4,
TUBB1, TUBB4A

1 COMP 0.020

Cytokine-cytokine
receptor

interaction
9

TNFRSF1A, CSF2RB,
CSF3R, CRLF2,

IFNGR1, IFNGR2,
IL1R2, PPBP, TGFB2

5
CCR10, TNFRSF13C,

TNFRSF6B, AMH,
BMPR1B,

0.004

False discovery rate (p-value adjusted).
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Figure 4. The interaction between differentially expressed genes involved in toll-like receptor signaling and cytokine-
cytokine receptor interaction pathways (red—genes belonged to NF-kappa-B signaling pathway, and TIR domain; dark
blue—I-kappa-B kinase/NF-kappa-B signaling, and interleukin-1 receptor binding; yellow—TNFR1-induced NF-kappa-B
signaling pathway, and TICAM1 deficiency—HSE; purple—innate immunity; green—cytokine; light blue—inflammatory
responses; String software; detected genes showed no more than five interactions).



Viruses 2021, 13, 2054 10 of 20

Viruses 2021, 13, x FOR PEER REVIEW  10  of  20 
 

 

PI3K‐Akt signaling 

pathway 
8 

CSF3R, EFNA4, GYS1, KDR, 

PIK3R5, PDGFRB, TLR2, TLR4 
4 

KITLG, ANGPT2, 

COMP, COL1A1 
0.010 

TNF signaling pathway  3  TNFRSF1A, PIK3R5, SOCS3  1  MAPK12  0.010 

Phagosome  9 

ATP6V1A, RAB7B, LAMP2, 

MSR1, NCF1, TLR2, TLR4, 

TUBB1, TUBB4A 

1  COMP  0.020 

Cytokine‐cytokine re‐

ceptor interaction 
9 

TNFRSF1A, CSF2RB, CSF3R, 

CRLF2, IFNGR1, IFNGR2, 

IL1R2, PPBP, TGFB2 

5 

CCR10, 

TNFRSF13C, 

TNFRSF6B, AMH, 

BMPR1B,   

0.004 

False discovery rate (p‐value adjusted). 

 

Figure 5. DEGs for which expression has been modified through SRLV infection involved in phagosome pathways (KEGG 

chx04145). The genes identified as differentially expressed (adjusted p‐value < 0.05) between uninfected and infected goats 

were highlighted red. 

3.3.2. DEGs Detected Between LPL and HPL Groups 

GO enrichment analysis allowed the detection of the most represented GO term, 10 

up‐ and 10 downregulated (Figure 6). 

Figure 5. DEGs for which expression has been modified through SRLV infection involved in phagosome pathways (KEGG
chx04145). The genes identified as differentially expressed (adjusted p-value < 0.05) between uninfected and infected goats
were highlighted red.

3.3.2. DEGs Detected between LPL and HPL Groups

GO enrichment analysis allowed the detection of the most represented GO term, 10
up- and 10 downregulated (Figure 6).
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In the group of downregulated genes, most of them were associated with: regu-
lation of signaling receptor activity (p-value < 0.0001) (53 genes, e.g., chemokine (C-C
motif), ligand 2 (CCL2), chemokine (C-X-C motif), ligand 5 (CXCL5), TNF superfamily
member 11 (TNFSF11), C-C motif chemokine ligand 17 (CCL17), C-X-C motif chemokine
ligand 9 (CXCL9), macrophage migration inhibitory factor (MIF)); the response to toxic
substances (43 genes, e.g., hemoglobin subunit mu (HBM), cholinergic receptor nicotinic
beta 2 subunit (CHRNB2), LY6/PLAUR domain containing 1 (LYPD1), gonadotropin-
releasing hormone 1 (GNRH1)), and NADH dehydrogenase complex assembly (21 genes,
e.g., NADH: ubiquinone oxidoreductase subunit A13 (NDUFA13), NADH: ubiquinone
oxidoreductase subunit S5 (NDUFS5), NADH: ubiquinone oxidoreductase core subunit
S7 (NDUFS7), NADH: ubiquinone oxidoreductase subunit B9 (NDUFB9)). The specific
genes belonging to detected GO were presented in Table 3 and in Supplementary Materials
Table S4. In the HPL group, an increased expression for 95 genes was identified (e.g.,
ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), interleukin
15 (IL15), chemerin chemokine-like receptor 1 (CMKLR1), nucleotide-binding oligomeriza-
tion domain containing 2 (NOD2), C-C motif chemokine receptor 2 (CCR2), interleukin 6
receptor (IL6R), interleukin 1 alpha (IL1A)) that represented GO term cytokine production
(FDR < 0.0001) (Table 4, Supplementary Materials Table S5). In addition, a high number of
upregulated genes related to vesicle organization was detected (38 genes; FDR < 0.030), as
well as vacuole organization (34 genes, FDR < 0.035).

Table 3. The significant GO terms of downregulated genes in group HPL goats.

GO Accession Number Number of Genes FDR Identified Genes

execution phase of
apoptosis GO: 0097194 10 0.0240

PTGIS, ENDOG, BOK, ERN2,
SHARPIN, CIDEC, CXCR3, SIRT2,

RPS3, BAX

tetrapyrrole metabolic
process GO: 0033013 9 0.00679

ALAS2, ALAD, UROD, CYP1A2,
UROS, HNF1A, MMAB, ATP5IF1,

BLVRB

response to toxic
substance GO: 0009636 43 0.00691

HBM, CHRNB2, LYPD1, GNRH1,
MPO, CHRNA6, DRD3, CHRND,

LTC4S, IL6

regulation of signaling
receptor activity GO: 0010469 53 <0.0000

FGF16, CCL2, CGA, INHBE,
CLEC11A, CXCL5, TNFSF11, AVP,

LYPD1, FOXH1, GNRH1, NPY,
CCL17, OXT, GHRH, NOG, EDA,

CXCL9, MIF, RETN

peptidyl-arginine
modification GO: 0018195 10 0.01500

ART1, PADI6, PADI3, PADI1,
KRTCAP2, COPRS, PARK7,
PRMT7, PRMT2, PRMT1

amine transport GO: 0015837 15 0.0060
CHRNB2, CHRNA6, DRD3, ACE2,

SNCG, SYT2, SLC22A16, SYT1,
SLC18A1, DTNBP1

organic cation transport GO: 0015695 3 0.0290 SLC22A1, SLC22A16, SLC18A3

ammonium transport GO: 0015696 15 <0.0000
RHAG, CHRNB2, CHRNA6, DRD3,
SLC6A2, SNCG, SYT2, ADCYAP1,

SLC22A16, SYT1

NADH dehydrogenase
complex assembly GO: 0010257 21 0.0010

NDUFA13, NDUFS5, NDUFS7,
NDUFB9, NDUFA9, NDUFA8,

BCS1L, NDUFB2, NDUFA5,
NDUFA2

FDR—false discovery rate (p-value adjusted), GO—gene ontology, HPL—high proviral load.
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Table 4. The significant GO terms of upregulated genes in group HPL goats.

GO Accession Number Number of Genes FDR Genes

peptidyl-cysteine
modification GO: 0018198 7 0.0020 GOLGA7B, MAP6D1, TMX3, RAB3D,

ZDHHC23, RAB6A, ZDHHC22

cytokine production GO: 0001816 95 <0.000

ADAMTS3, IL15, CMKLR1, NOD2,
ABCA1, GDF2, CCR2, HFE, RSAD2,

CHUK, ITK, LBP, ADCY7, IL6R, IL1A,
RAB7B, IFIH1, C3AR1, LPL, CD274

vacuole organization GO: 0007033 34 0.0351
ABCA1, PIP4K2B, UBXN2A,

RALB, RAB7B, PPT1, GAA, ACP2,
TBC1D14, AKTIP

vesicle organization GO: 0016050 38 0.0300 SEC16B, RAB8B, ABCA1, SAMD9, VPS39,
RAB7B, DYSF, STX19, EXOC8, BCL2

glutamate receptor
signaling pathway GO: 0007215 5 0.0600 CACNG3, GRM2, CRHBP,

HOMER2, PRNP

tissue remodeling GO: 0048771 14 0.0600 IHH, DCSTAMP, RASSF2, CCR2, DLL4,
RAB3D, IL1A, EFNA2, NOTCH2, CLDN18

FDR—false discovery rate (p-value adjusted), GO—gene ontology, HPL—high proviral load.

To better show the interaction between the broad set of genes represented by the
cytokine production GO term, the gene network was prepared according to String soft-
ware. The analysis indicated that some of the identified DEGs were involved in multiple
biological processes related to positive and negative regulation of cytokine production and
control in response to stimulus in both adaptive and innate immunity (Figure 6). Such
an approach allowed to pinpointed the upregulated genes with the highest number of
interactions (Table 5).

Table 5. The selected genes in goats that were significantly upregulated with a high number of provirus copies (HPL)
involved in multiple biological processes of cytokine production (GO: 0001816; FDR < 0.000).

Gene Protein Name FC Adjpval Protein Function

TLR4 Toll-like receptor 4 1.49 0.02
Acts via MYD88, TIRAP, and TRAF6,

leading to NF-kappa-B activation, cytokine
secretion, and the inflammatory response.

TLR2 Toll-like receptor 2 1.60 0.03

Related to mediating the innate immune
response to bacterial lipoproteins or

lipopeptides, related to cytokine secretion
and the inflammatory response.

TLR6 Toll-like receptor 6 1.66 0.04
Acts via MYD88 and TRAF6, leading to

NF-kappa-B activation, cytokine secretion,
and the inflammatory response.

CHUK
Inhibitor of nuclear

factor kappa-B kinase
subunit alpha

2.44 0.03
Plays an essential role in the NF- kappa-B
signaling pathway activated by multiple

stimuli also by viral products.

CSF1R
Macrophage

colony-stimulating factor 1
receptor

1.80 0.03

Controlling the proliferation and
differentiation of hematopoietic precursor
cells, especially mononuclear phagocytes,

such as macrophages and monocytes.

IRF1 Interferon regulatory factor 1 1.41 0.02
Regulation of IFN and IFN-inducible

genes, host response to viral and
bacterial infections.

NRLP3 NACHT, LRR, and PYD
domain-containing protein 3

Plays a crucial role in innate immunity
and inflammation.
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Table 5. Cont.

Gene Protein Name FC Adjpval Protein Function

IFIH1
Interferon-induced

helicase C
domain-containing protein 1

2.14 0.05

Plays a major role in sensing viral
infection and in the activation of a cascade

of antiviral responses, including the
induction of type I interferons and

proinflammatory cytokines.

TBK1 Serine/threonine-protein
kinase TBK1 1.80 0.02

Regulation of transcriptional activation of
proinflammatory and antiviral genes

including IFNA and IFNB.

CD14 Monocyte differentiation
antigen CD14 1.67 0.05

Acts via MyD88, TIRAP, and TRAF6,
leading to NF-kappa-B activation, cytokine
secretion, and the inflammatory response.

MYD88
Myeloid differentiation

primary response
protein MyD88

1.82 0.01
Acts via toll-like receptor and IL-1
receptor signaling pathway in the

innate immune response.

FC—fold change.

Identified DEGs were also analyzed for their involvement in biological pathways.
Thus, genes have been assigned to pathways involved in the acquired or antigen-specific
immune response (B-cell receptor and T-cell receptor signaling pathways; natural killer
cell-mediated cytotoxicity and Fc gamma R-mediated phagocytosis). Moreover, DEGs
belonged to the pathways responsible for recognition of pathogen, signal transduction, and
early immune responses: toll-like receptor signaling pathway; tumor necrosis factor (TNF)
signaling pathway; mammalian target of rapamycin (mTOR) signaling; and forkhead box
O (Foxo) signaling pathway. The comparison of the whole blood transcriptome of goats
with different provirus copy numbers allowed the detection of the Ras signaling pathway
(17 DEGs), inflammatory mediator regulation of transient receptor potential (TRP) channels
(12 DEGs), and hypoxia-inducible factor 1 (HIF-1) signaling pathway (12 DEGs), which
are considered as critical to control cytokine production, cell differentiation, function, and
cytotoxicity. The panel of genes was identified (paxillin (PXN); profilin 1(PFN1); actin-
related protein 2/3 complex subunit 5 (ARPC5); cytoplasmic FMR1 interacting protein 1
(CYFIP1); IQ motif containing GTPase activating protein 1 (IQGAP1)), which also represent
regulation of the actin cytoskeleton. The genes belonging to the selected pathways are
presented in Table 6.

Table 6. Significantly overrepresented pathways involved genes for which expressions were associated with SRLV
copy numbers.

Biological
Pathways

Number of Genes
Upregulated Upregulated Genes Number of Genes

Downregulated
Downregulated

Genes adjP *

B-cell receptor
signaling pathway 8

LYN, CHUK, DAPP1,
GRB2, PIK3CA, PIK3CB,

PIK3AP1, PIK3R1
4 NFKBIB, HRAS,

CD79B, CD79A 0.018

Fc gamma
R-mediated

phagocytosis
7 CRKL, LYN, ARPC5, PIK3CA,

PIK3CB, PIK3R1, PRKCD 5
DOCK2, LAT,

PLPP2, PRKCG,
RPS6KB2

0.034

Apoptosis 6 FAS, CHUK, PIK3CA, PIK3CB,
PIK3R1, TNFSF10 4 AIFM1, ENDOG,

IL3RA, NTRK1 0.034

Natural killer
cell-mediated
cytotoxicity

8
FAS, GRB2, IFNAR1,

PIK3CA, PIK3CB, PIK3R1,
PTK2B, TNFSF10

4 HRAS, HCST,
LAT, PRKCG 0.057

T-cell receptor
signaling pathway 7 CHUK, GRB2, MAPK14,

PIK3CA, PIK3CB, PIK3R1, TEC 3 HRAS, NFKBIB,
LAT 0.036
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Table 6. Cont.

Biological
Pathways

Number of Genes
Upregulated Upregulated Genes Number of Genes

Downregulated
Downregulated

Genes adjP *

mTOR signaling
pathway 5 EIF4E, PIK3CA, PIK3CB,

PIK3R1, ULK2 2 PRKCG, RPS6KB2 0.037

FoxO signaling
pathway 13

EP300, CHUK,
CDKN1A, GADD45A, GRB2,
MAPK14, PIK3CA, PIK3CB,
PIK3R1, PRKAB1, STAT3,

TGFBR2, TNFSF10

3 HRAS, FOXO1,
G6PC3 0.034

TNF signaling
pathway 9

FAS, TNFRSF1B, CHUK, IL15,
MAPK14, NOD2, PIK3CA,

PIK3CB, PIK3R1
0 - 0.044

Toll-like receptor
signaling pathway 8

TBK1, CHUK, IFNAR1,
MAPK14, PIK3CA, PIK3CB,

PIK3R1, TLR6
0 - 0.044

Regulation of actin
cytoskeleton 10

CRKL, GIT1, IQGAP1, ARPC5,
CYFIP1, PXN, PIK3CA,

PIK3CB, PIK3R1, PPP1CB
4 HRAS, FGFR2,

PFN1, PPP1CA 0.017

HIF-1 signaling
pathway 8

EP300, CUL2, CDKN1A,
EIF4E, PIK3CA, PIK3CB,

PIK3R1, STAT3
4 TIMP1, FLT1,

PRKCG, RPS6KB2 0.054

Inflammatory
mediator

regulation of TRP
channels

8
ADCY7, MAPK14, PIK3CA,
PIK3CB, PIK3R1, PLA2G4A,

PRKCD, PPP1CB
4 CALM3, NTRK1,

PRKCG, PPP1CA 0.050

Signaling
pathways
regulating

pluripotency of
stem cells

8
JAK1, JAK2, GRB2,

MAPK14, PIK3CA, PIK3CB,
PIK3R1, STAT3

2 HRAS, FGFR2 0.049

Ras signaling
pathway 11

RAP1B, RALB, TBK1,
CSF1R, CHUK, GRB2,

PIK3CA, PIK3CB, PIK3R1,
PLA2G4A, RALBP1

6
HRAS, CALM3,
FGFR2, FLT1,
LAT, PRKCG

0.033

P * value adjusted using Benjamini–Hochberg correction.

3.4. qPCR Results

DEGs from different functional groups, including the following genes: CCL2, CXCL5,
IL15, C-X-C motif chemokine receptor 3 (CXCR3), MIF, NOD2, CCR, B-cell lymphoma 2
(BCL2), and IL-2-inducible T-cell kinase (ITK), were selected for further validation by
qRT-PCR. This analysis revealed an agreement with the RNA-seq results: a high and
significant correlation was detected for IL15, CXCR3, and NOD2 genes (Table 7). For other
genes, the correlation was not significant, which may be related to genome annotation still
being under development and continued limited knowledge of all spliced variants of the
studied genes.

The correlation between provirus copy number and gene expression levels carried out
using samples from all animals tested from the flock showed that selected DEGs as CCL2
and CXCL5 (p-value < 0.001), CCR and BCL2 (p-value < 0.01), and ITK and NOD2 genes
(p-value < 0.05) were significantly associated with SLRV copy number.
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Table 7. The correlation coefficients obtained for RNA-seq data validation using qPCR and between qPCR results and
provirus copy number.

Correlation Coefficient

Gene Symbol qPCR vs. RNA-seq 1 qPCR vs. Provirus Copy Number 2

CCL2 0.850 0.778 ***
IL15 0.919 ** −0.242 ns

CXCR3 0.794 * 0.359 ns

MIF −0.248 ns −0.270 ns

NOD2 0.433 * −0.470 *
CCR 0.441 ns 0.515 **
BCL2 −0.107 ns 0.673 **

CXCL5 −0.232 ns 0.759 ***
ITK −0.589 ns 0.478 *

1 correlation between qPCR and RNA-seq data; 2 correlation between qPCR data estimated for all goats tested by qPCR and provirus copy
number; * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.0001, −p-value < 0.1, ns—not significant.

4. Discussion

To better understand the role of genes involved in the host response to SRLV infec-
tion, the RNA-seq method was applied to compare the whole gene expression profile in
uninfected goats with those carrying relatively high and low SRLV proviral loads. Data
obtained in this study enabled us to identify 1130 DEGs between control and LPL groups,
411 between control and HPL groups, and 1434 significant genes showing changed ex-
pression levels depending on provirus copy number. Out of the panel of 1434 DEGs
differentiated HPL and LPL goats, only 10 DEGs were shared between both the control
vs. LPL and control vs. HPL groups. This indicates that proviral load might be the main
driver and risk factor determining disease prediction in goats infected with SRLV [35].
Here, we focused on the analysis of some DEGs only being involved in immunological
processes since both innate and adaptive immune responses are known to play a crucial
role in controlling the course of SRLV infection.

It was shown that SRLV infection influences the expression of a cytokine network
that plays a pivotal role in the activation of the immune system and SRLV-related patho-
genesis [20]. Our findings indicated that 95 of the DEGs that were involved in multiple
biological processes of cytokine production were overexpressed in HPL goats. These an-
imals showed upregulated expression of interleukin 15 (IL-15) and interleukin 1 alpha
(IL-1α) and receptors for IL-10 (IL10Rβ), IL-13 (IL13Rα1), IL-15 (IL15Rα), IL-2 (IL2Rα) and
IL-4 (IL4R). This observation partly confirmed results obtained by Ravazzolo et al. [35], who
did not find prominent differences in the expression of several interleukins in goats with
different SRLV proviral loads. The level of IL-15 seems to be associated with the proviral
load, as was also seen in patients infected with human immunodeficiency virus (HIV) with
high viral load [49]. There is limited knowledge about the expression of IL-1α in the course
of SRLV infection. Jarczak et al. [50] observed down-regulation of IL-1α mRNA in the blood
of infected goats, suggesting that lentivirus infection may inhibit the expression of this gene.
However, this fact was not confirmed in our study where IL-1α was upregulated in HPL
goats. IL-1α is a proinflammatory cytokine that induces the expression of a variety of genes
and synthesis of several proteins, which, in turn, induce acute and chronic inflammatory
changes [51,52]. However, animals tested in this study did not show any clinical signs
of infections, but we cannot exclude the presence of inflammatory processes, especially
in goats with HPL, as the association between virus load and presence of inflammatory
lesions was clearly evidenced [35,53].

Among the most interesting DEGs detected in this study and engaged in numerous
biological processes of cytokine production were also toll-like receptor 2 (TLR2), toll-like
receptor 4 (TLR4), toll-like receptor 6 (TLR6), cluster of differentiation 14 (CD14), and
myeloid differentiation primary response gene 88 (MyD88), which are involved in TLR
signaling. Toll-like receptors, a family of pattern recognition receptors (PRRs), are key
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elements of native immunity. While the role of SRLV-induced TLR signaling has not been
widely studied in sheep and goats, it was shown that mutations in TLR7 and TLR8 may play
an important role in susceptibility and/or resistance to SRLV infection [54,55]. Our results
indicated that four genes belonging to the toll-like receptors family, TLR2, TLR4, TLR8,
TLR7, were significantly upregulated in the infected goats compared to uninfected goats.
However, we did not observe different expressions of TLR7 and TLR8 genes between goats
with HPL and LPL. Only the genes encoding TLR2, TLR4, and TLR6 were differentially
expressed and were found to be upregulated in HPL groups. TLR2, TLR4, and heterodimers
TLR2-TLR6 are TLR family members that have been involved in the recognition of viral
structural and nonstructural proteins leading to inflammatory cytokine production [56,57].
The expression of CD14 (a co-receptor for the TLR4 and TLR2 response [58] and MyD88),
an adaptor molecule that is critical for the signaling responses initiated through most TLRs,
was also upregulated in HPL goats. We can conclude that immune response against SRLV
is at least partially dependent upon TLR2 and TLR4 and correlated with the concentration
of proviral DNA, as was shown in the HIV model based on the expression of TLR2 and
TLR4 in monocytes [59].

Interferons (IFNs α, β, and γ) response is a highly robust and effective first line of
defense against a wide variety of viral infections; however, results on IFNs expression
during SRLV infection are contradictory [20,35,60,61]. When the IFN is synthesized, it
binds to the interferon alpha receptor (IFNAR), the specific receptor for IFN-I on the cell
membrane, formed by two subunits: IFNAR-1 and IFNAR-2. This binding activates the
tyrosine kinases TYK-2 and JAK-1, leading to the activation of the JAK-STAT pathway,
which is important in cytokine-mediated immune responses [62]. In our study, no differ-
ences in IFNs expression were observed between infected and uninfected goats, as well
as between HPL and LPL goats. However, genes involved in IFN signaling, interferon
regulatory factor 1 (IRF1), interferon receptor (IFNAR1), interferon-induced transmem-
brane protein 1 (IFITM1), interferon-inducible protein 1 (IFIH1), genes-encoded proteins
of JAK/STAT family (STAT2, STAT3, JAK2, JAK3, TYK2) and interferon-induced protein
with tetratricopeptide repeats (IFIT1, IFIT2, and IFIT3), were found to be one of the most
upregulated genes in goats with HPL. Overexpression of these genes may result in higher
activation of factors involved in antiviral responses. Our results may indicate that gene
expression of INFs did not necessarily correspond with the protein concentration, which
was also suggested by Jarczak et al. [50].

The zinc-finger (ZNF) proteins provide a particular interest in this analysis because
23 genes encoding these proteins were differentially expressed in HPL and LPL goats. Zinc-
finger proteins have nucleic acid-binding domains that can serve to regulate multiple gene
transcription. It has been established that a deletion variant near ZNF389 influenced SRLV
proviral concentration in multiple sheep flocks [63]. The functional importance of ZNF
during regulation of SRLV infection in goats is currently unknown, but our results strongly
suggest that expression of these genes is dominant in response to the SRLV infection and
can be associated with SRLV proviral concentration as was observed for HIV [64].

Another group of genes in which expression was dysregulated in response to the
infection with SRLV and was associated with proviral concentration was the genes-encoded
transmembrane proteins (TMEM; 16 genes). Recently, TMEM154 and TMEM38A genes
were identified as suitable candidates for SRLV resistance in sheep [15,16]. An amino
acid substitution (E/K) at position 35 of the TMEM154 was associated with the lower
concentration of SRLV provirus in sheep [18,19]. In the present study, we did not find any
correlation between the expression of TMEM154 and proviral load. However, our results
provided evidence that other genes, such as TMEM238, TMEM223, TMEM151, TMEM147,
TMEM53, were upregulated and may play an important role in the course of SRLV infection
and provirus concentration.
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5. Conclusions

In this study, we have demonstrated the changes in the transcriptome profile of goats
showing high and low proviral load following infection with SRLV. A total of 1434 dif-
ferentially expressed genes were involved in a variety of molecular and cellular defense
mechanisms of immune response, cell cycle regulation, and cellular metabolism. Numer-
ous genes have not been previously associated with lentiviral infection and may extend
structural and/or regulatory networks implicated in the course of infection with SRLV
(Supplementary Materials Figure S2). The knowledge about these genes provides the
basis for further work to identify genetic markers associated with SRLV infection and
provirus concentration. Such markers may be used to eliminate animals predisposed to
high proviral load and limit the outcome of clinical signs and spreading of the virus.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13102054/s1, Figure S1: Principal component analysis (PCA) plot presented samples
clustering based on similarities of their gene expression variation, Figure S2: The Summary of study
designed and obtained results based on whole transcriptome profiling under proviral load factor,
Table S1: The primers used for real-time PCR method, Table S2: Summary of reads quality and
mapping results of RNA-seq, Table S3: The most significantly dysregulated genes between HPL and
LPL goats, Table S4: The detail fold change values and GO term analysis of down-regulated genes in
group HPL goats, Table S5: The detail fold change values and GO term analysis of upregulated genes
in group HPL goats.
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